SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[M MA700]
January 18, 2014, morning, v
No aids.
Questions on the exam: Peter Helgesson, tel 070-65 77412
Each problem is worth 3 points.

1. (Black-Scholes Model) A simple European-style derivative pays the amount

$$
Y=(S(T)-S(0))^{+}
$$

at time of maturity T. Find the time zero price $\Pi_{Y}(0)$ of the derivative if the stock pays the dividend $\left(1-e^{-r T}\right) S\left(\frac{T}{2}-\right)$ at time $\frac{T}{2}$.

Solution. Set $s=S(0), g(x)=(x-S(0))^{+}$if $x>0$, and $\delta=1-e^{-r T}$. It is kown that

$$
\begin{aligned}
\Pi_{Y}(0) & =e^{-r T} E\left[g\left((1-\delta) s e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma W(T)}\right)\right] \\
=c(0,(1-\delta) s, s, T)= & (1-\delta) s \Phi\left(\frac{\ln \frac{(1-\delta) s}{s}+\left(r+\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}\right)-s e^{-r T} \Phi\left(\frac{\ln \frac{(1-\delta) s}{s}+\left(r-\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}\right) \\
= & s e^{-r T}\left(\Phi\left(\frac{\sigma \sqrt{T}}{2}\right)-\Phi\left(-\frac{\sigma \sqrt{T}}{2}\right)\right) \\
& =S(0) e^{-r T}\left(2 \Phi\left(\frac{\sigma \sqrt{T}}{2}\right)-1\right)
\end{aligned}
$$

2. Let $\left(X_{k}\right)_{k=1}^{n}$ be an i.i.d., where X_{1} possesses the probability density

$$
\frac{1}{2 \sqrt{2 \pi}}\left(1+x+x^{2}\right) e^{-\frac{x^{2}}{2}},-\infty<x<\infty .
$$

Find the characteristic function of $S_{n}=X_{1}+\ldots+X_{n}$.

Solution. For each real ξ,

$$
\begin{gathered}
c_{S_{n}}(\xi)=E\left[e^{i \xi S_{n}}\right]=E\left[\prod_{k=1}^{n} e^{i \xi X_{k}}\right] \\
=\prod_{k=1}^{n} E\left[e^{i \xi X_{k}}\right]=\left(E\left[e^{i \xi X_{1}}\right]\right)^{n} .
\end{gathered}
$$

Moreover,

$$
\begin{gathered}
E\left[e^{i \xi X_{1}}\right]=\int_{-\infty}^{\infty} e^{i \xi x}\left(1+x+x^{2}\right) e^{-\frac{x^{2}}{2}} \frac{d x}{2 \sqrt{2 \pi}} \\
=\frac{1}{2}\left(\int_{-\infty}^{\infty} e^{i \xi x} e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}+\int_{-\infty}^{\infty} e^{i \xi x} x e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}+\int_{-\infty}^{\infty} e^{i \xi x} x^{2} e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}\right) .
\end{gathered}
$$

Here

$$
\begin{gathered}
\int_{-\infty}^{\infty} e^{i \xi x} e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}=e^{-\frac{\xi^{2}}{2}} \\
\int_{-\infty}^{\infty} e^{i \xi x} x e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}=-i \frac{d}{d \xi} \int_{-\infty}^{\infty} e^{i \xi x} e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}=i \xi e^{-\frac{\xi^{2}}{2}}
\end{gathered}
$$

and

$$
\int_{-\infty}^{\infty} e^{i \xi x} x^{2} e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}=-i \frac{d}{d \xi} \int_{-\infty}^{\infty} e^{i \xi x} x e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}=\left(1-\xi^{2}\right) e^{-\frac{\xi^{2}}{2}}
$$

Hence

$$
\left.c_{S_{n}} \xi\right)=\left(1+\frac{i}{2} \xi-\frac{1}{2} \xi^{2}\right)^{n} e^{-\frac{n \xi^{2}}{2}} .
$$

3. (Black-Scholes Model) The joint stock price process $S=\left(S_{1}(t), S_{2}(t)\right)_{t \geq 0}$ is governed by a bivariate geometric Brownian motion with volatility $\left(\sigma_{1}, \sigma_{2}\right)$ and correlation ρ.

A European-style derivative pays the amount

$$
Y=\frac{\left(S_{2}(T)-S_{1}(T)\right)^{2}}{\sqrt{S_{1}(T) S_{2}(T)}}
$$

at time of maturity T. Find the time zero price $\Pi_{Y}(0)$ of the derivative.

Solution. Note that $Y=g\left(S_{1}(T), S_{2}(T)\right)$, where the function

$$
g\left(x_{1}, x_{2}\right)=\frac{\left(x_{2}-x_{1}\right)^{2}}{\sqrt{x_{1} x_{2}}}
$$

is positively homogenous of degree one. Therefore, let S_{2} be a numéraire and put

$$
S=\frac{S_{1}}{S_{2}}
$$

where S is a geometric Brownan motin with volatility

$$
\sigma_{-}=\sqrt{\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}}
$$

Moreover, let

$$
s=\frac{S_{1}(0)}{S_{2}(0)}
$$

and recall that

$$
\frac{Y}{S_{2}(T)}=\frac{(1-S(T))^{2}}{\sqrt{S(T)}}=g(S(T), 1)
$$

Now with S_{2} as a numéraire, by applying the Black-Scholes theory with $r=0$, we concude that the derivate has the time zero price

$$
\begin{gathered}
E\left[g\left(s e^{-\frac{\sigma_{-}^{2}}{2} T+\sigma_{-} W(T)}, 1\right)\right] \\
=E\left[s^{-\frac{1}{2}} e^{\frac{\sigma_{-}^{2}}{4} T-\frac{\sigma_{-}}{2} W(T)}-2 s^{\frac{1}{2}} e^{-\frac{\sigma_{-}^{2}}{4} T+\frac{\sigma_{-}}{2} W(T)}+s^{\frac{3}{2}} e^{-\frac{3 \sigma_{-}^{2}}{4} T+\frac{3 \sigma_{-}}{2} W(T)}\right] \\
=s^{-\frac{1}{2}} e^{\frac{\sigma_{-}^{2}}{2} T}-2 s^{\frac{1}{2}}+s^{\frac{3}{2}} e^{\frac{3 \sigma^{2}}{2} T} .
\end{gathered}
$$

In the original price unit we get the time-zero price

$$
S_{1}^{-1 / 2}(0) S_{2}^{3 / 2}(0) e^{\frac{\sigma_{-}^{2}}{2} T}-2 S_{1}^{1 / 2}(0) S_{2}^{1 / 2}(0)+S_{1}^{3 / 2}(0) S_{2}^{-1 / 2}(0) e^{\frac{3 \sigma_{-}^{2}}{2} T}
$$

4. Show that there exists an arbitrage portfolio in the single-period binomial model if and only if

$$
r \notin] d, u[.
$$

5. (Black-Scholes Model) Assume $t, T \in \mathbf{R}, \tau=T-t>0$, and $g \in \mathcal{P}$.
(a) Define the price $\Pi_{Y}(t)$ at time t of a European derivative with payoff $g(S(T))$ at time of maturity T.
(b) Let

$$
d_{1}=\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{s}{K}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right)
$$

and $d_{2}=d_{1}-\sigma \sqrt{\tau}$. Show that

$$
c(t, s, K, T)=s \Phi\left(d_{1}\right)-K e^{-r \tau} \Phi\left(d_{2}\right)
$$

