Exam for the course "Options and Mathematics" (CTH[MVE095], GU[MMA 700]) 2016/17

Telefonvakt/Rond: Jakob Hultgren (5325)

August 1362017

REMARKS: (1) No aids permitted

1. (i) Define and explain the concept of arbitrage portfolio process invested in a binomial market (max. 1 point)
(ii) Assume that the dominance principle holds. Prove the put-call parity (max. 2 points). Prove that the price of European call options is a convex function of the strike price (max. 2 points).

Solution. See Definition 2.4, and Theorem 1.2.
2. Consider a 3 -period binomial market with the following parameters:

$$
e^{u}=\frac{5}{4}, \quad e^{d}=\frac{1}{2}, \quad e^{r}=1 \quad p=\frac{1}{2} .
$$

Assume $S_{0}=\frac{64}{25}$. Consider the European digital call option expiring at time $T=3$ and with pay-off

$$
Y=S(3) H(S(3)-1)
$$

where H is the Heaviside function: $H(x)=0$, if $x<0, H(x)=1$ if $x \geq 0$. Compute the possible paths of the price $\Pi_{Y}(t)$ of the derivative (max. 1 point). Compute the expectation of $\Pi_{Y}(t)$ in the risk-neutral probability measure at each time $t \in\{0,1,2,3\}$ and explain the obtained result (max. 2 points). Next consider a portfolio which is long x shares of the stock and short 1 share of the digital option. Show that if x is too large the expected return of this portfolio is negative (max. 2 points).
Solution. We start by writing down the diagram of the stock price and the value of
the derivative at time of maturity $T=3$ (which is equal to the pay-off)

The parameters of the binomial model are such that

$$
q_{u}=\frac{2}{3}, \quad q_{d}=\frac{1}{3}, \quad r=0 .
$$

To compute the price of the derivative at the times $t \in\{0,1,2\}$ we use the recurrence formula

$$
\Pi_{Y}(t)=e^{-r}\left(q_{u} \Pi_{Y}^{u}(t+1)+q_{d} \Pi_{Y}^{d}(t+1)\right)=\frac{2}{3} \Pi_{Y}^{u}(t+1)+\frac{1}{3} \Pi_{Y}^{d}(t+1), \quad t \in\{0,1,2\} .
$$

Hence at time $t=2$ we have

$$
\begin{aligned}
& S(2)=4 \Rightarrow \Pi_{Y}(2)=\frac{2}{3} \cdot 5+\frac{1}{3} \cdot 2=4 \\
& S(2)=\frac{8}{5} \Rightarrow \Pi_{Y}(2)=\frac{2}{3} \cdot 2+\frac{1}{3} \cdot 0=\frac{4}{3} \\
& S(2)=\frac{16}{25} \Rightarrow \Pi_{Y}(2)=\frac{2}{3} \cdot 0+\frac{1}{3} \cdot 0=0 .
\end{aligned}
$$

At time $t=1$ we have

$$
\begin{aligned}
& S(1)=\frac{16}{5} \Rightarrow \Pi_{Y}(1)=\frac{2}{3} \cdot 4+\frac{1}{3} \cdot \frac{4}{3}=\frac{28}{9} \\
& S(1)=\frac{32}{25} \Rightarrow \Pi_{Y}(1)=\frac{2}{3} \cdot \frac{4}{3}+\frac{1}{3} \cdot 0=\frac{8}{9}
\end{aligned}
$$

and at time $t=0$ we have

$$
\Pi_{Y}(0)=\frac{2}{3} \cdot \frac{28}{9}+\frac{1}{3} \cdot \frac{8}{9}=\frac{64}{27}
$$

Hence we obtain the following diagram for the derivative price

This concludes the first part of the exercise (1 point).
Let $\mathbb{E}_{q}\left[\Pi_{Y}(t)\right]$ denote the expectation of $\Pi_{Y}(t)$ at time t in the risk-neutral probability measure $\left(q_{u}, q_{d}\right)$. Clearly $\mathbb{E}_{q}\left[\Pi_{Y}(0)\right]=\Pi_{Y}(0)=64 / 27$. At time $t=1$ we have

$$
\mathbb{E}_{q}\left[\Pi_{Y}(1)\right]=q_{u} \frac{28}{9}+q_{d} \frac{8}{9}=\frac{2}{3} \frac{28}{9}+\frac{1}{3} \frac{8}{9}=\frac{64}{27} .
$$

At time $t=2$,

$$
\mathbb{E}_{q}\left[\Pi_{Y}(2)\right]=q_{u}^{2} \cdot 4+2 q_{u} q_{d} \frac{4}{3}+q_{d}^{2} \cdot 0=\left(\frac{2}{3}\right)^{2} 4+2 \frac{2}{3} \frac{1}{3} \frac{4}{3}=\frac{64}{27}
$$

At time $t=3$ we have

$$
\mathbb{E}_{q}\left[\Pi_{Y}(3)\right]=\left(\frac{2}{3}\right)^{3} 5+3\left(\frac{2}{3}\right)^{2} \frac{1}{3} 2=\frac{64}{27} .
$$

Hence the expectation of the derivative price in the risk neutral measure is time independent. This is explained by the fact that the risk-free rate is zero, hence the price
of the derivative equals its discounted price. Since the latter is a martingale in the risk neutral probability measure, then it has constant expectation in this probability measure. This concludes the second part of the exercise (2 points).
The value at time t of a portfolio with x shares of the stock and -1 share of the derivative is

$$
V(t)=x S(t)-\Pi_{Y}(t) \Rightarrow \mathbb{E}[R]=x(\mathbb{E}[S(T)]-S(0))+\mathbb{E}[Y]-\Pi_{Y}(0)=a x+b .
$$

Note that the expected return is computed with the physical probability p and not with the risk-neutral probability. As $\mathbb{E}[S(T)]=(1 / 2)^{3}(5+2+4 / 5+8 / 25)=203 / 200<$ $64 / 25=S(0)$, then $a<0$. Hence $\mathbb{E}[R]>0$ if and only if $x<b /|a|$. This concludes the third part of the exercise.
3. Consider a European derivative with pay-off $Y=(S(T)-S(0))^{2} / S(T)$ at time of maturity $T>0$. Compute the Black-Scholes price $\Pi_{Y}(t)$ (max. 2 points) and the number of shares of the stock in the hedging portfolio (max. 1 point). Compute the lowest possible value of $\Pi_{Y}(t)$ (max. 2 points).
Solution. Since $Y=S(T)-2 S(0)+S(0)^{2} S(T)^{-1}=Y_{1}+Y_{2}+Y_{3}$, and since the Black-Schole price $\Pi_{Y}(t)$ is linear in the pay-off, then

$$
\Pi_{Y}(t)=\Pi_{Y_{1}}(t)+\Pi_{Y_{2}}(t)+\Pi_{Y_{3}}(t) .
$$

Recall that, for $Y=g(S(T))$, the Black-Scholes price is $\Pi_{Y}(t)=v(t, S(t))$, where

$$
v(t, x)=\frac{e^{-r \tau}}{\sqrt{2 \pi}} \int_{\mathbb{R}} g\left(x e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau} e^{\sigma \sqrt{\tau} y}\right) e^{-\frac{y^{2}}{2}} d y .
$$

In this case we have $g_{1}(x)=x, g_{2}(x)=-2 S(0)$ (constant) and $g_{3}(x)=S(0)^{2} / x$. Computing the resulting integral we obtain

$$
\Pi_{Y}(t)=S(t)-2 S(0) e^{-r \tau}+S(0)^{2} e^{\left(\sigma^{2}-2 r\right) \tau} S(t)^{-1}
$$

This completes the first part of the exercise (2 points). Note that $\Pi_{Y}(t)=v(t, S(t))$, where

$$
v(t, x)=x-2 S(0) e^{-r \tau}+S(0)^{2} e^{\left(\sigma^{2}-2 r\right) \tau} / x
$$

Hence

$$
h_{S}(t)=\partial_{x} v(t, S(t))=1-S(0)^{2} e^{\left(\sigma^{2}-2 r\right) \tau} S(t)^{-2} .
$$

This concludes the second part of the exercise (1 point). Now, the price function $v(t, x)$ has only one minimum at $x: \partial_{x} v=0$, that is at the price $S(t)$ for which $h_{S}(t)=0$. From the formula for $h_{S}(t)$, we see that

$$
h_{S}(t)=0 \quad \text { if and only if } \quad S(t)=S(0) e^{\frac{1}{2}\left(\sigma^{2}-2 r\right) \tau} .
$$

Replacing this value of $S(t)$ in the formula for $\Pi_{Y}(t)$ we obtain that the minimal value of $\Pi_{Y}(t)$ is given by $2 S(0) e^{-r \tau}\left(e^{\sigma^{2} / 2}-1\right)$. This concludes the third part of the exercise (2 points)

