Exam for the course "Options and Mathematics" (CTH[MVE095], GU[MMA700]) 2016/17

Telefonvakt/Rond: Simone Calogero (5362)

April 18 ${ }^{\text {th }}, 2017$

REMARKS: (1) No aids permitted (2) Minor errors in the calculations will be forgiven, but remember that fractions look nicer when you simplify them!

1. (i) Give and justify the definition of Black-Scholes price (max. 1 point).
(ii) Derive the formula for the Black-Scholes price of call and put options (max. 2 points).
(iii) Derive the density of the geometric Brownian motion (max. 2 points).

Solution. See lecture notes. The Black-Scholes price arises as the time-continuum limit of the binomial price.
2. Consider a 2 -period binomial model with the following parameters:

$$
e^{u}=\frac{5}{4}, \quad e^{d}=\frac{1}{2}, \quad e^{r}=1, \quad p \in(0,1) .
$$

Let $S(0)=\frac{64}{25}$ be the initial price of the stock and $B(0)=1$. Compute the price at time $t \in\{0,1,2\}$ of the American put on the stock with maturity $T=2$ and strike price $K_{2}=\frac{11}{5}$ and identify the possible optimal exercise times prior to maturity (max. 1 point). Next consider the compound option which gives to its owner the right to buy the American put at time $t=1$ for the price $K_{1}=\frac{8}{25}$. Compute the price of the compound option at time $t=0$ (max. 1 point) and the hedging portfolio for the compound option (max. 1 point). Compute the maximum expected return in the interval $t \in[0,2]$ for the owner of the compound option as a function of $p \in(0,1)$ (max. 2 points).
Solution. The binomial tree for the stock price and for the intrinsic value $Y(t)$ of the

American put are

Let $\widehat{\Pi}_{\text {put }}(t)$ be the price at time $t \in\{0,1,2\}$ of the American put. We have the recurrence formula $\widehat{\Pi}_{\text {put }}(2)=Y(2)$ and

$$
\widehat{\Pi}_{\mathrm{put}}(t)=\max \left[Y(t), e^{-r}\left(q_{u} \widehat{\Pi}_{\mathrm{put}}^{u}(t)+q_{d} \widehat{\Pi}_{\mathrm{put}}^{d}(t)\right)\right],
$$

where

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{d}}=\frac{2}{3}, \quad q_{d}=1-q_{u}=\frac{1}{3}, \quad e^{r}=1 .
$$

Hence the binomial tree for $\widehat{\Pi}_{\text {put }}(t)$ is

The only optimal exercise time prior to maturity is $t=1$ when $S(1)=\frac{32}{25}$. This concludes the first part of the exercise (1 point). The compound option has maturity $T=1$ and pay-off

$$
Q=\left(\widehat{\Pi}_{\mathrm{put}}(1)-\frac{8}{25}\right)_{+} .
$$

Since $\widehat{\Pi}_{\text {put }}(1)$ is a function of $S(1)$, then we can treat the compound option as a standard derivative on the stock. The compound option expires in the money if the stock price goes down at time $t=1$ and out of the money otherwise. Hence the price of the compound option at time $t=0$ is

$$
\Pi_{\mathrm{cp}}(0)=\frac{1}{3}\left(\frac{23}{25}-\frac{8}{25}\right)_{+}=\frac{1}{5} .
$$

This answers the second question (1 point). As to the hedging portfolio, the compound option can be hedged by investing on the stock and the risk-free asset. The number of shares in the stock is

$$
h_{S}=\frac{1}{S(0)} \frac{\Pi_{\mathrm{cp}}^{u}(1)-\Pi_{\mathrm{cp}}^{d}(1)}{e^{u}-e^{d}}=\frac{25}{64} \frac{0-\frac{3}{5}}{4}-\frac{1}{2} .=-\frac{5}{16}
$$

The number of shares in the risk-free asset is obtained by solving the replicating equation at time $t=0$:

$$
h_{S} S(0)+h_{B} B(0)=\Pi_{\mathrm{cp}}(0) \Rightarrow h_{B}=\frac{\Pi_{\mathrm{cp}}(0)-h_{S} S(0)}{B(0)}=\frac{31}{25} .
$$

This answers the third question (1 point). Finally we compute the expected return $\mathbb{E}[R]$ for the owner of the compound option as a function of $p \in(0,1)$. Clearly

$$
R=-\frac{1}{5} \quad \text { with prob. } p,
$$

which is the return when the stock price goes up at time $t=1$. If the stock price goes down at time $t=1$, the owner of the compound option will buy the American put for $K_{1}=8 / 25$. If the American put is exercised at this optimal exercise time, then the return will be

$$
R=\frac{23}{25}-\frac{1}{5}-\frac{8}{25}=\frac{2}{5} \quad \text { with prob. } 1-p .
$$

Hence, if the American put is exercised at $t=1$, the expected return is

$$
\mathbb{E}[R]=-\frac{1}{5} p+\frac{2}{5}(1-p)=\frac{2}{5}-\frac{3}{5} p
$$

If the American put is exercised at $t=2$, the expected return is
$\mathbb{E}[R]=-\frac{1}{5} p+\left(\frac{3}{5}-\frac{8}{25}-\frac{1}{5}\right) p(1-p)+\left(\frac{39}{25}-\frac{8}{25}-\frac{1}{5}\right)(1-p)^{2}=\frac{1}{25}(3 p-2)(8 p-13)=f(p)$.
Now, it is straightforward to verify that $f(p)>\frac{2}{5}-\frac{3}{5} p$ when $0<p<2 / 3$ and $f(p)<\frac{2}{5}-\frac{3}{5} p$ when $2 / 3<p<1$. Hence the strategy which maximizes the expected return for the compound option is: for $0<p<2 / 3$, the American put should not be exercised at time $t=1$, while for $2 / 3<p<1$ the American put should be exercised at time $t=1$. For $p=2 / 3$ the two strategies lead to the same expected return. This answers the last question (2 points).
3. (Put-call parity for Asian options). Consider a N-period arbitrage-free binomial market with $r \neq 0$ and let $S(t)$ denote the price of the stock at time $t \in\{0, \ldots, N\}$. The Asian call, resp. put, with maturity $T=N$ and strike K is the non-standard European style derivative with pay-off

$$
Y_{\text {call }}=\left[\left(\frac{1}{N+1} \sum_{t=0}^{N} S(t)\right)-K\right]_{+}, \quad \text { resp. } \quad Y_{\mathrm{put}}=\left[K-\left(\frac{1}{N+1} \sum_{t=0}^{N} S(t)\right)\right]_{+}
$$

Denote by $A C(0)$ and $A P(0)$ the binomial price at time $t=0$ of the Asian call and put, respectively. Prove the following put-call parity identity:

$$
A C(0)-A P(0)=e^{-r N}\left[\frac{S(0)}{N+1} \frac{e^{r(N+1)}-1}{e^{r}-1}-K\right] \quad(\max .5 \text { points })
$$

Solution. We have

$$
A C(0)=e^{-r N} \sum_{x \in\{u, d\}^{N}}\left(q_{u}\right)^{N_{u}(x)}\left(q_{d}\right)^{N_{d}(x)} Y_{\text {call }}(x)
$$

and similarly for the Asian put. Thus

$$
A C(0)-A P(0)=e^{-r N} \sum_{x \in\{u, d\}^{N}}\left(q_{u}\right)^{N_{u}(x)}\left(q_{d}\right)^{N_{d}(x)}\left(Y_{\text {call }}(x)-Y_{\text {put }}(x)\right)
$$

Using
$Y_{\text {call }}-Y_{\text {put }}=\left[\left(\frac{1}{N+1} \sum_{t=0}^{N} S(t)\right)-K\right]_{+}-\left[K-\left(\frac{1}{N+1} \sum_{t=0}^{N} S(t)\right)\right]_{+}=\left(\frac{1}{N+1} \sum_{t=0}^{N} S(t)\right)-K$
we find

$$
\begin{aligned}
A C(0)-A P(0)= & e^{-r N} \sum_{x \in\{u, d\}^{N}}\left(q_{u}\right)^{N_{u}(x)}\left(q_{d}\right)^{N_{d}(x)} \frac{1}{N+1} \sum_{t=0}^{N} S(t) \\
& -e^{-r N} K \sum_{x \in\{u, d\}^{N}}\left(q_{u}\right)^{N_{u}(x)}\left(q_{d}\right)^{N_{d}(x)} \\
= & \frac{e^{-r N}}{N+1}\left(\sum_{t=0}^{N} \mathbb{E}[S(t)]\right)-K e^{-r N} \mathbb{E}_{q}[1]
\end{aligned}
$$

where $\mathbb{E}_{q}[\cdot]$ denotes the expectation in the risk-neutral measure. As $\mathbb{E}_{q}[1]=1$ and $\mathbb{E}_{q}[S(t)]=$ $S(0) e^{r t}$, we obtain

$$
A C(0)-A P(0)=e^{-r N}\left[\frac{S(0)}{N+1}\left(\sum_{t=0}^{N} e^{r t}\right)-K\right] .
$$

Using the formula in the HINT concludes the exercise (5 points).

