MATEMATIK Datum: 2015-06-01 Tid: 8:30
GU, Chalmers Hjilpmedel: - Inga
A .Heintz Telefonvakt: Alexei Heintz Tel.: 0763-053373.

Losningar till tenta i ODE och matematisk modellering, MMG511, MVE161

Answer first those questions that look simpler, then take more complicated ones etc.
Good luck!

1. Formulate and give a proof to the theorem about the limit and boundedness of solutions ' ()
to linear systems of ODE with constant coefficients when ¢ — +o0. (4p)

Check Theorem 3.3.5 in the course textbook.

2. Formulate and give a proof to Bendixsons criteria about non-existence of periodic solutions
to autonomous ODE in plane. (4p)

Check Theorem 6.1.2 in the course textbook.

3. Consider the following system of ODE:

010 O
d7 (t) — . . 000 O
FTa A7 (t), with a constant matrix A = 00 1 2
00 -2 1
Give a general real solution to the system. Find all those initial vectors 7o = 7 (0) that give
bounded solutions to the system. (4p)

Solution. The general solution has the form 7 (t) = exp(tA)7rg for 7 (0) = 75. The matrix

A is block-diagonal, so the matrix exponential has the form
| exp(tJ) O . |01 12
exp(tA) = [@ exp(tK) with J = 0 0 , K = 9 1 ,and O - zero 2 x 2
matrix.
1t B cos(2t)  sin(2t)
We know that exp(tJ) = [ 01 ] and exp(tK) = exp(t) [ sin(2t) cos(2t) |

The first relation follows from the power series for exponent exp(tJ), that for the matrix J
will consist just of two nonzero terms, because J? = 0. The second relation follows from the
a
—b
complex numbers a + b and from the Euler formula for the exponent of complex numbers:
exp(a + ib) = exp (a) (cos(b) + isin(b)).

fact that the matrices in the form: K = have the same algebraic properties as

If one does not remember the formula for exp <[ @

b Z }), then one can easily derive it by

solving the system W’ = Kw.

. . b .
We observe that the arbitrary matrix in the form K = @ b a ], has complex conjugate

eigenvectors and eigenvalues : vy = {[ _z'l ]} — A = a—1b, and v; = {[ 1 ]} -

A1 = a + ib. The general complex solution to the system w’ = Ku has the form: w(t) =
Cy exp(Ait)vy + Caexp(Aat)va.

We can instead choose real and imaginary parts of exp(Ait)v1 as a basis for real solutions.
We use here the Euler formula for the exponent of complex numbers:



Vi(t) = Re <exp(<a+bi)t> { 1 D = [ fetfiifnbzfi) } ;

v = (exp (oo [ 1]) = e

We observe that V1(0) = [ (1) ] and V52(0) = [ (1) ] It implies that the fundamental matrix

10

solution [Vi(t), Va(t)] is the principal matrix solution: [Vi(0),V2(0)] = [ 0 1

}:Iand

] B R

the exponent of the matrix tK above .

] . In particular we get the formula for

Finaly the general real solution to the given system is

1t 0 0

010 0

0 0 e'(cos2t) e (sin2t)
0 0 —el(sin2t) e!(cos2t)
It is easy to observe that the only initial data that give bounded solutions consist of vectors
75 € R* with all components exept the first one equal to zero, and of the zero initial data,
because all columns in exp(tA) exept the first one include unbounded functions. The last
question can be answered even using the simpler complex form of the general solution: 7 () =

T (t) = exp(tA)ro = 7o for an arbitrary initial vector 7.

1 ¢ 0 0
— 010 0 — . . : . :
exp(tA)rg = 0 0 &Mt 0 ro with Ay = 2414, Ay = 2 — 7 - being complex eigenvalues
0 00 etet
. 1 2
to the matrix K = [ 9 1 }

. Formulate Banach’s contraction principle. Consider the following operator
™
K(x)(t) = A/ sin(ts) z(s)ds + t2,
0

for all ¢ € [0,n] acting in the Banach space C([0,7]) of continuous functions with norm

|z = sup |z(t)].
tel0,m)

Find using Banach’s contraction principle conditions on the constant A > 0 such that the
operator K (x)(t) has a fixed point. (4p)

Solution. Banachs contraction principle states that if an operator K maps a closed subset
U in a Bancha space B into itself: K : U — U

and is a contraction on U, that means that ||Kx — Ky|| < 6|z — y|| with § < 1, then the
operator K has a unique fixed point £ = K7 in U that can be found by iterations

Tnt+1 = Kz, with an arbitrary start approximation zg € U, so that x,1 2 z.l

We calculate supremum norm of the value of the operator K (x)(t):

|Kz|| = sup |K(x)(t)] = sup {Afo7r sin(ts) xz(s)ds +t2| <72+ Ar sup |z(s)]
tel0,7] t€[0,m] s€[0,m]

Therefore | Kz|| < 72 + Ar||z|| . It implies that the operator K maps a ball with radius r in
the Banach space C([0, 7]) into the ball of radius 72 + Amr.



We like to find such radius R of the ball B(0, R) in C([0,7]) and such constant A > 0 that K
would map the ball B(0, R) into itself. Namely that 72+ A7 R < R. It implies 72 < R(1—Ar).
We see that A must be chosen smaller than 1/m: A < % and R must be chosen large enough:
iy < R Then K : B(0,R) — B(0,R). The next step is to find conditions that imply
that K is a contraction on B(0, R). We estimate the norm |Kx — Ky|:

Ko Kl < s (A sin(es) (ots) () da] < A sup fo(s) = y(s)| = Ax [~

We have chosen already A < 1. It implies that K is a contraction on B(0, R) with ﬁ <R
chosen above so that K : B(0, R) — B(0, R). It implies by the Banach contraction principle

that K has a unique fixed point in B(0, R).

. Consider the following system of ODE and investigate the stability of the stationary point in
the origin depending on the real constant a € R.

=y
Solution. We try to use the linearization of the system. The variational matrix in the origin
sa= |0 1
sA=| _, .|
Eigenvalues of A are \; = %a - %\/az —4, N = %a + %\/a2 —4. For a > 0 we see that
Re(A;) > 0 and the Grobman-Hartman theorem implies that the origin is unstable (even
repeller). Similarly for a < 0, Re()\;) < 0 and the origin is asymptotically stable. For
0 < a < 2 it will be an unstable spiral, for 2 < a it will be an unstable node. For a = 2 it will
be an unstable improper node. For —2 < a < 0 it will be stable spiral, for a < —2 it will be
a stable node. For ¢ = —2 it will be stable improper node.

For For a = 0 we cannot use Grobman Hartman theorem because the origin is not hyperbolic:
both eigenvalues have real part zero.

We try instead to use a simple test function V(x,y) = % (:132 + y2) in this case. Introducing
the vector notation f(x,y) for the right hand side of the equation we get

Vi(z,y) = VV - fz,y) = [Z: ] : {‘Zm_wzy] = azy —yx — y(x)’y = —z?y® < 0 for
(z,y) # (0,0). Therefore the origin is a stable stationary point. We use Lasalle’s invariance
principle to check if the origin is asymptotically stable or not. V’(z,y) = 0 on the set S
where £=0 or y = 0: the union of coordinate axises. We check if this set includes invariant
sets other than the origin. Forz =0, 2’ =y #0fory # 0. Fory =0,y = —x # 0 for z # 0.
Therefore the set S includes only one invariant set - the origin (0,0), that by a corollary to
Lasalle’s invariance principle must be asymptotically stable.

. Show that all solutions to the following system of ODE exist for arbitrary large time ¢t > 0
= —423 + 2zy
4
Solution. We try to show that all solutions stay within a finite domain. It would imply that
they all are extendable for any time ¢ > 0. We use a simple test function V(z,y) = %IB2 + 9?2
in this case. Introducing vector notations for the right hand side f(z,y) of the equation we
get

V/(IE,y) = va(xvy) = |:
0 for (z,y) # (0,0)

T ][ —4z3 + 2xy

920 a2 Ao 2 (A2 2
2 oyt a2 ]—ny Ay — 4t 4222y 4 (2t — 2Py + %) <



because the quadratic form a? — ab + b? is positive definite.

It means that solutions starting inside an ellipse %:L‘Q + 92 < C of radius C > 0 will never
leave it and therefore can be extended for any time ¢t > 0 because the right hand side of
the equation is a smooth function in the whole plane R? (and therefore is Lipschitz in any
bounded domain).

Max. 24 points;

Thresholding for marks: for GU: VG: 19 points; G: 12 points. For Chalmers: 5: 21 points;
4: 17 points; 3: 12 points;

One must pass both the home assignments and the exam to pass the course. Total points for
the course are calculated as Total = 0.3Assignments+0.7Exam - the average of the points for the
home assignments (30%) and for this exam (70%). The same thresholding is valid for the exam,
for the home assignments, and for the total points for the course.



