Lösningar till tenta i ODE och matematisk modellering, MMG511, MVE162 (MVE161)

Answer first those questions that look simpler, then take more complicated ones etc. Good luck!

- 1. Give the definition for a stable equilibrium point to an autonomous system of ODEs. Formulate and prove the theorem on the stability of equilibrium points to autonomous ODEs by Lyapunovs functions. (4p)
- 2. Formulate and give a proof to Bendixsons criteria about non-existence of periodic solutions to autonomous ODE in the plane. (4p)

Check proofs in the textbook.

3. Consider the following system of ODE: $\frac{d\vec{r}(t)}{dt} = A\vec{r}(t)$, with a constant matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 4 \\ 1 & 0 & -1 \end{bmatrix}$. Give general solution to the system. Find all initial data such that (4p)

corresponding solutions are bounded.

Solution. General solution is can be given in two ways: as $\overrightarrow{r}(t) = \exp(tA)\overrightarrow{r}_0$ for arbitrary vector \overrightarrow{r}_0 of initial data at t = 0, alternatively as a linear combination of columns in an arbitrary fundamental matrix solution $\Phi(t)$.

Practical calculation of $\exp(tA)\overrightarrow{r_0}$ is based on the idea of considering $\exp(tA)\overrightarrow{r_0} = e^{\lambda_j t}e^{t(A-\lambda_j I)}\overrightarrow{r_0}$ for an eigenvalue λ_i with multiplicity n_i .

It is easy to observe that for initial data \overrightarrow{r}_0 represented as a linear combination of the eigenvectors and generalized eigenvectors to A corresponding to the eigenvalue λ_j or $\overrightarrow{r}_0 \in$

 $M(\lambda_j, A)$, the general expression $\exp(tA)\overrightarrow{r}_0 = e^{\lambda_j t} \sum_{k=0}^{\infty} \frac{t^k}{k!} (A - \lambda_j I)^k \overrightarrow{r}_0$ becomes a finite sum:

$$\exp(tA)\overrightarrow{r}_{0} = e^{\lambda_{j}t} \sum_{k=0}^{n_{j}-1} \frac{t^{k}}{k!} (A - \lambda_{j}I)^{k} \overrightarrow{r}_{0}$$

The set of all eigenvectors and generalized eigenvectors to A builds a basis to the space \mathbb{C}^n and therefore the general solution $\exp(tA) \overrightarrow{r}_0$ can be explicitly expressed as a linear combination of expressions as above for all distinct eigenvalues of A. We remind that generalised eigenvalues $v^{j,(k)}$ satisfy the following equations $(A - \lambda_j I) v^{j,(k)} = v^{j,(k-1)}$ for k > 1, and $(A - \lambda_j I) v^{j,(1)} = v^j$ where v^j is a eigenvector corresponding to λ_j and $v^{j,(k)}$ are associated generalized eigenvectors.

For the given matrix A, the characteristic polynomial is $\lambda^3 - 3\lambda^2 = 0$ the characteristic values are $\lambda_1 = 0$ (with multiplicity 2) and $\lambda_2 = 3$ (simple). Eigenvectors v^1 and v^2 satisfy equations

$$(A - 0I) v^{1} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 4 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0, \text{ and } (A - 3I) v^{2} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0, \text{ or equivalently} \begin{cases} 2x + y = 0 \\ 2y + 4z = 0 \\ x - z = 0 \end{cases}, \text{ with solution } [x = z, y = -2z], \text{ and } \begin{cases} -x + y = 0 \\ -y + 4z = 0 \\ x - 4z = 0 \end{cases}, \text{ with } x - 4z = 0 \end{cases}$$

solution: [x = 4z, y = 4z]. We see that the eigenvalue $\lambda_1 = 0$ has only a one-dimensional set of eigenvectors. We specify one eigenvector by choosing z = 1: $v^1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ and the eigenvalue $\lambda_2 = 3$ has also only one eigenvector (this we could expect because this eigenvalue is simple). A corresponding eigenvector can be chosen as $v^2 = \begin{bmatrix} 4 \\ 4 \\ 1 \end{bmatrix}$. We calculate a

generalized eigenvector $v^{1,(1)}$ corresponding to $\lambda_1 = 0$ by solving the equation

$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 4 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \text{ or } \begin{cases} 2x + y = 1 \\ 2y + 4z = -2 \\ x - z = 1 \end{cases}, \text{ Solution is: } [x = z + 1, y = -2z - 1]$$

We choose a generalized eigenvector as $v^{1,(1)} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$ taking z = 1.

Representing arbitrary initial vector $\overrightarrow{r}_0 = C_1 v^1 + C_2 v^{1,(1)} + C_3 v^2$ where $C_1 v^1 + C_2 v^{1,(1)} \in C_1 v^1 + C_2 v^{1,(1)} \in C_1 v^2$ M(0, A) and $C_3v^2 \in M(3, A)$, represent general solution as

$$\vec{r}(t) = \sum_{k=0}^{1} \frac{t^{k}}{k!} (A - 0I)^{k} \left(C_{1}v^{1} + C_{2}v^{1,(1)} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2} \left(v^{1,(1)} + tv^{1} \right) + C_{3}e^{3t}v^{2} = C_{1}v^{1} + C_{2}v^{1} + C_{2$$

It is easy to observe that solutions are bounded if and only if $r_0 = C_1 v^1$.

4. Consider the system of ODEs. $\begin{cases} x' = y \\ y' = -y - g(x) \end{cases}$

where g is continuously differentiable for |x| < k, for some k > 0, and xg(x) > 0 for $x \neq 0$, q(0) = 0.

Investigate stability of the stationary point at the origin by using an appropriate Lyapunov function. (4p)

Solution. Introduce a positive definite test function $V(x, y) = \frac{1}{2}y^2 + \int_0^x g(\lambda)d\lambda$. The derivative of V(x, y) along trajectories of solutions is: $\frac{d}{dt}V(x(t), y(t)) = \begin{bmatrix} g(x) \\ y \end{bmatrix} \cdot \begin{bmatrix} y \\ -y - g(x) \end{bmatrix} = \begin{bmatrix} y \\ -y - g(x) \end{bmatrix}$ $-y^2 \le 0$

for $(x,y) \neq (0,0)$. Therefore the origin is a stable stationary point. The set of zeroes of $\frac{d}{dt}V(x(t),y(t))$ consists of the x- axis. The second equation in the system together with the properties of q - function imply that the origin (0,0) is the only invariant set for the system on the x - axis. Therefore the origin is an asymptotically stable stationary point by a corollary to the Krasovsky - la Salles invariance principle.

5. Show that the following system of ODEs has a periodic solution.

$$\begin{cases} x' = y - x \left(x^2 + y^2 - 3x - 1 \right) \\ y' = -x - y \left(x^2 + y^2 - 3x - 1 \right) \end{cases}$$
(4p)

Solution. We are going to construct a positively invariant set that does not include any stationary point and conclude using Poincare Bendixson theorem. A positively invariant set is constructed by checking a simple text function $V(x,y) = x^2 + y^2$ and considering it's derivative along trajectories:

$$V' = -(x^2 + y^2)(x^2 + y^2 - 3x - 1) = -(x^2 + y^2)((x^2 - 3/2)^2 + y^2 - 3, 25)$$

The expression $(x^2 + y^2 - 3x - 1)$ is negative inside a small enough circle around the origin, for example inside the circle $x^2 + y^2 = (0.2)^2$ and is positive for $x^2 + y^2$ large enough, for example for $x^2 + y^2 = 4^2$. It implies that the V' < 0 on the circle $x^2 + y^2 = 4^2$ and negative on the circle

 $x^2 + y^2 = (0.2)^2$ and therefore the ring-shaped set $(0.2)^2 \le x^2 + y^2 \le 4^2$ is a positively invariant set for the given system.

Stationary points of the system satisfy the system of equations $\begin{cases} 0 = y - x (x^2 + y^2 - 3x - 1) \\ 0 = -x - y (x^2 + y^2 - 3x - 1) \\ 0 = -x$

Therefore by Poincare -Bendixsons theorem the system must have at least on periodic orbit inside the invariant set $(0.2)^2 \le x^2 + y^2 \le 4^2$.

6. Let $\varphi(t)$ be a solution to the linear system of ODE's x' = A(t)x with periodic coefficients having period T. Show that φ has the property $\varphi(t+T) = k\varphi(t)$ if and only if k is the eigenvalue of the monodromy matrix $\Phi(T) = \exp(TR)$, where $\Phi(t)$ is the fundamental matrix such that $\Phi(0) = I$. **Hint.** Use that any solution $\varphi(t) = \Phi(t)\varphi(0)$. (4p)

Solution. We substitute the expression $\varphi(t) = \Phi(t)\varphi(0)$ into the given equation $\varphi(t+T) = k\varphi(t)$ and arrive to the expression

$$\Phi(t+T)\varphi(0) = k\Phi(t)\varphi(0)$$

We use the definition of the monodromy matrix: $\exp(TR)$: $\Phi(t+T) = \Phi(t) \exp(TR)$ and conclude that $\Phi(t) \exp(TR)\varphi(0) = k\Phi(t)\varphi(0)$. Multiplying the last relation from the left by $(\Phi(t))^{-1}$ (the fundamental matrix is always non-singular) we get the equation $\exp(TR)\varphi(0) = k\varphi(0)$. This equation means that $\varphi(0)$ is an eigenvalue of the matrix $\exp(TR)$ with eigenvalue k.

Starting from the statement that the matrix $\Phi(T) = \exp(TR)$ has an eigenvalue k with an eigenvector $\varphi(0)$ and carrying out the same reasoning in the backword order, we arrive to the statement that there is a solution $\varphi(t) = \Phi(t)\varphi(0)$ to the linear system of ODEs x' = A(t)x having the property $\varphi(t+T) = k\varphi(t)$.

Max. 24 points;

Threshold for marks: for GU: VG: 19 points; G: 12 points. For Chalmers: 5: 21 points; 4: 17 points; 3: 12 points;

One must pass both the home assignments and the exam to pass the course. Total points for the course are calculated as Total = 0.32 Assignments + 0.68 Exam - the average of the points for the home assignments (32%) and for this exam (68%). The same threshold is valid for the exam, for the home assignments, and for the total points for the course.