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Losningar till tenta i ODE och matematisk modellering, MMG511, MVE162
(MVE161)

Answer first those questions that look simpler, then take more complicated ones etc.
Good luck!

1. Give definitions to: monodromy matrix, characteristic multiplicators, characteristic exponen-
tials. Formulate and give a proof to the theorem on stability of solutions to the linear system

of ODE with periodic coefficients. (4p)
2. Formulate and give a proof to Picard - Lindelof theorem on solvability of the initial value
problem to a system of ordinary differential equation 2’ = f(t, ), z(ty) = zo. (4p)
. 3 -1
3. Calculate exp(At) for the constant matrix A = 5 0 | (4p)
Solution.

exp(At) is a fundamental matrix to the system of differential equations 2/ = Az. It means

o 1
that columns in exp(At) are solutions to the system above with initial data e; = { 0 ] and

ey = [ (1) ] . The plan is to find first the general solution, then these two particular solution.

3 -1

5 0 },X2—3X—|—2: (X -1)(X -2) =0, so

The characteristic polynom for A is [

1 1
eigenvalues are A\; = 1, Ao = 2. Eigenvectors are v; = { [ 2 } } = A vz = { [ 1 ] } e

General solution is x(t) = Cyvie! + Covae?. To satisfy the initial data z(0) = Cyvie’ +
C2U262t = €1

we solve a system of two equations for C; and Cs:

s Jrexl )= [p Jormmencrom [ 1 ][ ] =[6]

[ _21 [1) ] [ gl } = [ (1) } = (1 = —1 and Cy = 2. Therefore the first columnt in exp(At)
2

-1 2 —el + 2¢e%
e ot 2% _ t 2% _
is: —vie® + 2vge { 9 } e+ [ 9 ] e [ —9¢t 4 22t

Similarly we find the second column:
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1 -1 t 2t
The second column in exp(At) is: viet — vge?t = [ 5 ] el + { } et = [ ¢ ot ]

ot 2t 2
and finally exp(At) = [ ¢ e e ]

—2¢t 4+ 2e2t 2¢t — 2

An alternative but more complicated solution would be to represent exp(At) as exp
t

P [ ¢ egt ] P~! where the matrix P has columns of eigenvectors: P = (Ul,'l)z):|:

(At) =
11
0 21}



-1
and the inversion of P can be calculated by Kramer formulas: P~ = [ ; 1 ] = { _21 _11

We derive the final expression by multiplication of the three matrices:

et 0], 1 17[e o -1 1 e eIl -1 1
eXP<At>:P[o e2t]P1:[2 1H0 e%H 2 —1]:[26t e”H 2 —1]:

—et +2e2t et — 2
—2¢t 4 2e2t 2t — 2
' =e¥ —e”
. Find all stationary points of the system of ODE
3x+y?—2
and investigate their stability by linearization. (4p)
Solution.

We find stationary points by pointing out that the first equation implies y = = and then
V3z + 22 — 2 = 0 implies 3z + 22 —4 = (z +4) (z — 1) = 0 and therefore two roots z; = 1
and z9 = —4 follow.

We have two stationary points: (1,1) and (—4, —4).

—e eV
The Jacobi matrix is J(z,y) = 3 y
24/3z+y2  \/3x+y?

J(1,1)=| 3 L | = [ < ] The trace of J(1,1) is tr (J(1,1)) =1/2—e <0
2v3+1  V/3+1 4 2

det (J(1,1)) = e(—1/2—3/4) = —2e < 0 it implies that the stationary point (1, 1) is has one

negative and one postive eigenvalue and therefore is a saddle point and is unstable by the

Grobman Hartman theorem.

The characteristic equation for a 2x2 matrix A is A2 — tr(A)\ — det(A4) = 0.

In this particular situation it is A% + (e - %) A — %e = 0.

Eigenvalues are: \; = —%e + i — i\/lGe +4e2+1, Ay = —%e + i + i\/lGe + 4e2 + 1.

-4 -4 —4 4
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The trace of J(—4,—4) is tr (J(—

det (J(—4,—4)) = ¢4 (2 — %) =

negative and the stationary point

Hartman theorem.

—4))=-2-e*<0.

4 > 0. Therefore the the real parts of eigenvalues are

4,
Se
1€
(—4,—4) is an asymptotically stable node by the Grobman

The characteristic equation is A% + ( —4 4 2) A+ 7 5=t =0.

Eigenvalues are : Alzf%e_‘lflf%\/e%fe%qtél, )\ng%e_4fl+%,/€%f€i4+4

. Investigate stability of the origin and find a domain of stability for the following system of
ODE by using an appropriate Lyapunov function.

=y
4
{y’z—y+y3—x5 (4p)
Solution.

We choose a test function V(z,y) = 25 4+ ay? with unknown positive coefficient a because
there are terms % in the second equation and y both in the first and in the second equation.
We calculate

VV-f:[ 6°

Y
2ay } ' [ —y+yd—ab } = 62%y — 2ay® + 2ay* — 2ayz®

|



and observe that with the choice a = 3 and V (z,y) = 2 + 3y we get:
VV . f= 6:)35y — 6y2 + 6y4 — 6y:L‘5 = —6y2 (1 — y2) <0
for |y| < 1. Therefore the stationary point in the origin is stable by Lyapunov’s theorem.

To decide if it asymptotically stable or not we check the set of points (z,y) where VV - f =0
These are points on the x - axis y = 0.

We observe that trajectories starting on the z - axis have velocities in y direction 3’ = —2°

that are zero only in the origin (0,0). Therefore all trajectories starting on the x - axis leave
it except the trajectory starting in the origin that is a stationary point. Therefore there are
no complete orbits on the x axis except the origin and the origin is asymptotically stable
by a corollary to the Krasovsky - la’Salle principle. Level sets of of the Lyapunovs function
V(z,y) = 25+3y? are ellipse like closed curves symmetric with respect to coordinate axes. The
"largest" such level set inside the stripe |y| < 1 must, because of the symmetry, go through the
point (0,1) and is V' (0, 1) = 3. Therefore a domain of asymptotic stability that we can identify
using this Lyapunov function is the domain inside this level set: S = {(=,y) : 2% 4 3y* < 3}:

v/ =—ay+z(1—2?—y?)

y’zam+y(1—x2—y2)—B where a and B are

. Consider the following system of ODE {

arbitrary constants.

i) Show that there exists a region K = {(:c,y) R T 7'2} such that all trajectories
eventually enter K.

ii) Do all solutions to this system exist on infinite interval of time and why?
iii) Show that the system has a periodic solution when B = 0. (4p)
Solution.

i) We derive the equation for r = /22 + y2 by muliplying the firs equation by z, the second
equation by y

and adding the equations and using that 2’z + y'y = 3 (22 + y2)/ =1 (7"2)/ = rr’. It implies
that
rr! =2 (1 — 7’2) — Brsin(0)
where 0 is the polar angle. Finally
' =7 (1—r%) — Bsin(0)
The last equation implies that for r(r? — 1) > |B| + 1 the derivative ' < —1 and therefore
choosing an r, satisfying this inequality, we get that any trajectory starting outside the set

K = {(z,y) : 2* + y* < r2} will enter this set after a finite time, because 7(t) < 7(0) exp(—t)
when points of the trajectory are outside the set K.



ii) Solutions having bounded maximal interval of existence must leave any compact set in
finite time.The fact that all trajectories of this system enter the compact set K and stay
there implies that all solutions can be extended to infinite interval of time, because they all
stay within this compact set forever.

iii) If B = 0 we observe that for example the annulus 0.5 < r < 2 is a positively invariant
set that in case a # 0 will include no stationary points. Therefore, according to the Poincare
Bendixson theorem this annulus must include at least one periodic orbit.

One can also observe that in this case ' = 0 for r = 1 and therefore the circle r = 1 must be
periodic orbit because there are no stationary points on this circle if a # 0.

One can also derive a differential equation for the polar angle:

o L, oy yr—aly
(tan(6))" = COSZ(Q)H N (5) L
B [aa:+y(1—m2—y2)]x—[—ay+x(1—x2—y2)]y
= -
a(z*+y?)  a
B x? ~ cos?(0)

Therefore #' = a. It implies that the periodic solution with » = 1 will evolve uniformly around
the circle r = 1 with angle speed a. If a = 0 there will be movement only along the straight
lines through the origin towards the whole circle » = 1 of stationary points and no periodic
solutions.

Max. 24 points;

Thresholding for marks: for GU: VG: 19 points; G: 12 points. For Chalmers: 5: 21 points;
4: 17 points; 3: 12 points;

One must pass both the home assignments and the exam to pass the course. Total points for
the course are calculated as Total = 0.32Assignments + 0.68 Exam - the average of the points
for the home assignments (32%) and for this exam (68%). The same thresholding is valid for the
exam, for the home assignments, and for the total points for the course.



