
1 Bendixson�s citerium for nonexistence of pe-

riodic solutions in plane.

Theorem. Let x0 = f(x) with f : G! R2, G � R2 be open, f 2 C1(G); and
let D � G be a simply connected domain (domain without "holes" even
without point holes). It is enough to require that f is locally Lipschitz in G

with more knowlege of integration theory.

Suppose that div(f) = @f1
@x1

+ @f2
@x2

is strictly positive (or strictly negative)

in D, where f = [f1; f2]
T .

Then the equation has no periodic solutions with orbits inside D:

Proof 1. Carry out a proof by contradiction. Suppose that there is a

periodic trajectory x(t) with period T > 0 in D. x(t+ T ) = x(t) and

x01(t) = f1(x(t)); x02(t) = f2(x(t))

Denote orbit of x(t) by L =fx(t) : t 2 [0; T ]g. It will be a closed curve.
Denote the domain inside L by 
. Then the boundary @
 = L because D � 

is simply connected and has no holes. Consider the integral of div(f) over 


and apply Gauss theorem:

I =

Z



div(f)dx1dx2 =

Z
@


f � n dl

where n is the outward normal to the boundary @
. Point out that f(x(t)) =

x0(t) on @
 = L because L is the orbit of the periodic solution x(t) that

we supposed to be existing. Therefore f(x(t)) is the tangent vector to @


and therefore scalar product of it woth the normal vector is zero f � n = 0.

Therefore

I =

ZZ



div(f)dx1dx2 =

Z
@


f � n dl = 0

with the curve integral over @
 = L in the right hand side. On the other
hand div(f) > 0 (or strictly negative) in the whole D � 
:Therefore the inte-
gral I =

R


div(f)dx1dx2 over a bounded domain 
 must be strictly positive

(negative):We arrived to a contradiction: 0 > 0. Therefore our supposition
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was wrong and the system cannot have a periodic orbit in D.�
Proof 2. starts similarly with the supposition that there is a periodic

trajectory x(t) with period T in D, x(t+ T ) = x(t) and

x01(t) = f1(x(t)); x02(t) = f2(x(t))

Denote the orbit of x(t): by L =fx(t) : t 2 [0; T ]g. Denote the domain
inside L by 
. Then the boundary @
 = L becauseD � 
 is simply connected
and has no holes.

We apply the Greens formula:I
@


Pdx1 +Qdx2 =

ZZ



�
@Q

@x1
� @P

@x2

�
dx1dx2

instead of Gauss theorem.

Choose P = �f2, Q = f1 and express the contour integral in the left side
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of the Greens formula using the de�nition of the contour integral:I
@


f1dx2 � f2dx1 =
Z T

0

(f1x
0
2 � f2x01) dt

Point out that x01(t) = f1(x(t)) and x
0
2(t) = f2(x(t)) and substitute these

expressions into the integral:I
@


f1dx2 � f2dx1 =
Z T

0

(f1f2 � f2f1) dt = 0

Apply the Greens formula substitute expressions for P and Q; and conclude

that in the case
�
@f1
@x1
+ @f2

@x2

�
= div(f) > 0:

0 =

I
@


f1dx2 � f2dx1 =
ZZ




�
@f1
@x1

+
@f2
@x2

�
dx1dx2 > 0

that is contradiction: 0 > 0. In the case if div(f) < 0 in D we arrive to the

contradiction < 0. �
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1. Example.

Show that the following system of ODE has no periodic solutions.

1.

(
x0 = x3 � y2x+ x
y0 = �0:5y + y3 + x4y

We consider divergence of the right hand side of the system.

div(f) = 3x2 � y2 + 1� 0:5 + 3y2 + x4 = x4 + 3x2 + 2y2 + 0:5 > 0

Therefore divergence of the right hand side of the equation is positive

everywhere in the plane that is a simply connected set (does not have holes,

even point-holes). According to Bendixson�s criterium the system cannot have

periodic solutions anywhere in the plane.

Example.
Show that the following system of ODE has no periodic solutions.

1.

(
x0 = 1

7
+ x2 � yx+ y2

y0 = �1
5
� y2

Solution

y0 is always strictly negative. It implies that y(t) must be monotone

function of time. It contradicts to possibility of having periodic solutions

that are always bounded.
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