A general way to calculate exponents of matrices. (par-

ticularly useful for matrices having complex eigenval-

ues)

We use here general solution to the equation z’ = Ax.
We clarify first in which way it can be used.

For any matrix B the product Be, gives the column £ in the matrix
B.

Therefore the column k in exp(A) is the product exp(A)ex, where
vector e is a standard basis vector, or colum with index k from the
unit matrix .

On the other hand exp(At)¢ is a solution to the equation 2’ = Az with
initial condition z(0) = ¢

The expressions x(t) = exp(At)ey is a solution to the equation 2’ = Ax
with initial condition z(0) = e

Therefore the value of the solution in time ¢t = 1: z4(1) = exp(A)ey
gives the column £ in the matrix exp(A)

Having the general solution for example in the case of dimension 3:
z(t) = C1¥1(t) + CoWUs(t) + C3Ws(t)

in terms of linearly independent solutions Wy (t), Wa(t), W3(t), we can
for every k£ find a set of constants C j,Cs 1,,C3 1, corresponding to each
of the initial data e;. Namely we solve equations C ;U1 (0)+C4 ;W2 (0)+
Cg,k\pg(()) = €k, k= 1, 2,3

that are equivalent to the matrix equation
Cip Cip Cis
[(W1(0), ¥2(0), U3(0)] | Con Cao Ca3 | = e1,e,e3) =1
Cs1 Csp (33

Values at t = 1 of corresponding solutions:
ﬂ?k(l) = Cl,klpl(l) + Cg7k\112(1) + CS,k\I]i%(l) = exp(l : A)@k

will give us columns exp(1 - A)ey in exp(A).
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e In the matrix form this result can be expressed as

01,1 Cl,z 01,3
Coy Chy Chs | = [91(0), Wy(0), Us(0)] "
03,1 Cs0 03,3
C'1,1 01,2 01,3
exp(A) = [V1(1),Vy(1),U3(1)] | Con Con Cag
03,1 03,2 03,3

= [W1(1), Ua(1), U5(1)] [T1(0), T2(0), T5(0)]

We demonstrate this idea using the result on the general solu-
tion from the problem 859.

3 -3 1
We can calculate exp 3 -2 2 , eigenvalues: \; = —1, Ay =
-1 2 0

1—d, Ag=1+73
General solution to the system x’ = Ax is:

l’(t) = Cqul(t) + 02\112<t) + 03\113(75)

1 cost —sint cost +sint
= Cre | 1 | +0% cost + Csé’ sint
-1 sint —cost

introducing shorter notations for each term: x(t) = C1U4(t) + CoWs(t) +

C3WUs(t).
We calculate initial data for arbitrary solution by
1 1 1
I’(O) = 01‘1/1(0)+02‘1/3(0)+03\I/3(0)201 1 +CQ 1 +03 0
-1 0 -1
Ch 1 1 1 Ch
x(0) = [¥1(0),P3(0),¥30)] | Co | =] 1 1 0 Cy
Cs -1 0 -1 Cs
exp(A) has columns that are values of x(1) for solutions that satisfy ini-
1 1 1 Cia
tial conditions r(0) = ej, es,ezand therefore 1 1 0 Cor | =

-1 0 -1 ] | Csy



(1] 11 1 o 0 11 1 Cis
0 = €1, 1 1 0 C272 = 1 = €9, 1 1 0 02’3 =
| 0 -1 0 -1 Cs2 0 -1 0 -1 Cs3
F 0
0| =es;
L 1 -
Cy
We solve all three of these systems for | Cy | in one step as a matrix
Cs
equation
I 1 1 Cip Cia Cig
1 1 0 02,1 02’2 0273 =1
-1 0 -1 C31 Csp Cs3
It is equivalent to the Gauss elimination of the following extended matrix:
1 1 1 1 00
11 0 010 ] . The result at the rigth half will be the inverted
-1 0 -1 0 0 1
matrix:
Ci1 Ciso Cis 11 17" 1 1 -1
02’1 02,2 02’3 = 1 1 0 = 1 0 1
03’1 0372 0373 -1 0 -1 1 —1 0

It can also found by applying Cramer’s rule.

We arrive to the expression of the matrix exponent by collecting these

results through the matrix multiplication:

Cip Cip Cis
exp(At) = [Wq(t), Wa(t), ¥s(t)] | Con Coo Cog
Cs1 (32 Cs3
et e (cost —sint) €' (cost+ sint) -1 1 -1
exp(At) = | et el cost e'sint 1 0
—et e’ sint —e' cost 1 -1

e' (cost +sint) —e '+ e’ (cost —sint) —e' (cost + sint) + e
= (cost)e' + (sint) et —e" — (sint) et + et
— (cost) e’ + (sint) e 4+ e (cost)el —e™t

—e !+ el (cost —sint)

(cost)el —e™t

sint) et + et
(



and finally for t = 1 we get exp(A)

(cos1+sinl) —e 2+ (cosl —sinl) —(cosl+sinl)+e? —e 2+ (cosl—sinl)
exp(A) = e (cos1) + (sinl) — e2 — (sinl) +e72 (cos1) —e2
—(cos1) + (sinl) +e2 (cosl) —e2 (sinl) + e2



