24. For each of the following systems show that the indicated region R is positively invariant:
(a) $\dot{x}_{1}=2 x_{1} x_{2}, \quad \dot{x}_{2}=x_{2}^{2}, \quad R=\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \geqslant 0\right\}$;
(b) $\quad \dot{x}_{1}=-\alpha x_{1}+x_{2}, \quad \dot{x}_{2}=(\beta-\alpha) x_{2} ; \quad \alpha, \beta$ constant, $R=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=\beta x_{1}\right\} ;$
(c) $\quad \dot{x}_{1}=-x_{1}+x_{2}+x_{1}\left(x_{1}^{2}+x_{2}^{2}\right), \quad \dot{x}_{2}=-x_{1}-x_{2}+x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$, $R=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2}<1\right\} ;$
(d) $\quad \dot{x}_{1}=x_{1}\left(x_{2}^{2}-x_{1}\right), \dot{x}_{2}=-x_{2}\left(x_{2}^{2}-x_{1}\right), \quad R=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>x_{2}^{2}\right\}$.
25. Show that the polar form of the non-linear system

$$
\dot{x}_{1}=-x_{2}+x_{1}\left(1-x_{1}^{2}-x_{2}^{2}\right), \quad \dot{x}_{2}=x_{1}+x_{2}\left(1-x_{1}^{2}-x_{2}^{2}\right)
$$

is given by

$$
\dot{r}=r\left(1-r^{2}\right), \quad \theta=1 .
$$

Solve this equation subject to the initial conditions $r(0)=r_{0}, \theta(0)=\theta_{0}$ at $t=0$ to obtain

$$
r(t)=r_{0} /\left(r_{0}^{2}+\left(1-r_{0}^{2}\right) \mathrm{e}^{-2 t}\right)^{1 / 2}
$$

Plot the graph of $r(t)$ against t for
(a) $0<r_{0}<1$,
(b) $r_{0}=1$,
(c) $r_{0}>1$,
and obtain the phase portrait of the system. Can the phase portrait be sketched more easily from the polar differential equation?

Hints and answers
24. (a) Let $x_{2}(0) \geqslant 0$; then $\dot{x}_{2} \geqslant 0$ implies $x_{2}(t) \geqslant x_{2}(0)$ for all positive t;
(b) For $x_{2}=\beta x_{1}, \dot{x}_{1}=(\beta-\alpha) x_{1}$ and $\dot{x}_{2}=(\beta-\alpha) x_{2}$. Thus \dot{x}_{2} $=\beta \dot{x}_{1}$;
(c) In polar coordinates $\dot{r}=-r\left(1-r^{2}\right)$ and hence $\dot{r}<0$ for r <1;
(d) The trajectories lie on the family of hyperbolae $x_{1} x_{2}=C$. Show that the boundary of the indicated region is a parabola of fixed points.

