1 General properties of w -limit sets and La
Salle’s invariance principle and it’s applica-

tions to asymptotic stability §5.2

Example. An elementary introduction to LaSalle’s invariance prin-
ciple.
We like to investigate stability of equilibrium poin tin the origin for the

system

/

Ty = —x — 1

Using the simple test function V (zy,z2) = 22 4+ 22 we observe that it is a

Lyapunov function for the system:
Vi(xq,29) = VV - f(21,22) = 20129 — 22179 — 275 = —213 < 0

and the origin is a stable equilibrium point. On the other hand V is not a
strong Lyapunov function, because V(z1,23) = 0 not only in the origin, but
on the whole z; - axis where x5 is zero.

On the other hand considering the vector field of velocities of this system
on the z; - axis, we observe that they are crossing the x; - axis (even are
orthogonal to it in this particular example) in all points except the origin. It
means that all trajectories of the system cross and immediately leave the x; -
axis that is the line where V(z1, 22) = 0 (the Lyapunov function is not strong).
This observation shows that in fact the Lyapunov function V (p(t, £)) is strictly
monotone along trajectories (t,£) everywhere except discret time moments,
when ¢(t, &) crosses the z; - axis. More explicitely in polar coordinates r and
0:

(rz), = —2rtsin*h

We can therefore conclude that V(¢(¢,£)) \, 0 as t — oo and therefore,



the origin is asymptotically stable equilibrium of this system of equations.
One can also get a more explicit picture of this dynamics by looking on the

equation for the polar angle 6:
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We see that for r < 2 the trajectories tend to the origin going (non-uniformly)
as spirals clockwise around the origin.
This example demonstrates the main idea with applications of the LaSalles

invariance principle to asymptotic stability of equilibrium points.



Proposition. Simple version of applying LaSalle’s invariance prin-
ciple for asymptotic stability of equilibrium points by using "weak"
Lyapunof functions.

( The complete version of LaSalle’s invariance principle is Theorem 5.15.
p. 183 that is considered a bit later)

We find a simple "weak" Lyapunov function V;(z) < 0 for z € U in the
domain U C G, 0 € U. This fact implies stability of the equilibrium. Then
we check what happens on the set Vf_l(O) where V;(z) = 0. If the set Vf_l(O)
contains no other orbits except the equilibrium point, this equilibrium point
in the origin must be asymptotically stable.

Any trajectory starting in W will have a positive orbit with compact clo-
sure. We need this property for applying LaSalle’s invariant principle describ-
ing w- limit sets for positive orbits of solutions to ODEs.

Exercise.

Show that all trajectories of the system

/

r =Yy

/

y = —o—(1-a%y

that go through points in the domain H [z, y]TH < 1, tend to the origin. Or by
other words, show that the origin is an asymptotically stable equilibrium and
that the circle H [z, y]TH <1 isit’s domain of attraction.

Consider V (x,y) = 2% + ¢

Vi(z,y) = 2oy —2zy— (1—2?)y*=—-(1—-2)y* <0
Vil0) = {(z,y):y =0}

The only invariant set is {0}, therefore for trajectories starting in H [z, y]" H <

1 the origin is and attractor and it is asymptotically stable with H [z, y]TH <1

being the domain of attraction.



More general formulation and a proof of the LaSalle’s invariance principle
use some general properties of transition mappings, and w - limit sets. We
collect them here and give some comments about their proofs.

We consider I.V.P. and corresponding transition map (¢, ) for the system

Y = f()
w0) = ¢

with f: G — R", G - open, G C R", f is locally Lipschitz, ¢ € G.
1.1 Main theorem on the properties of limit sets.

The next theorem on the properties of w - limit sets collects properties of w -
limit sets valid for systems of any dimension, in contrast with the Poincare -
Bendixson theorem and it’s generalization, that gives a

description of w - limit sets only for systems in plane, or on 2-dimensional
manifolds.

Main theorem about properties of limit sets. Theorem 4.38, p.143

We keep the same limitations and notations for the autonomous system as
above.

Let £ € G. Let the closure of the postive semi-orbit O (£) be compact and
contained in G,

Then Ry C I and the w - limit set Q(§) C G is

1) non-empty

2) compact (bounded and closed)

3) connected

4) invariant (both positively and negatively) under the local flow ¢(t,¢)
generated by the ODE: namely for any w - limit point n € Q(¢), the maximal
interval /,, = R for initial data in 7, and ¢(t,n) € Q(§) for all t € R.

5) p(t, &) approaches Q(&) as t — oo:

Jim dist((1,6). ©(6)) = 0



Example. The Lorentz equation. Trajectory - blue, limit set (&)

- red
s = —olr—y)
y = rx—y—az
7 = ay—bz
A trajectory for o = 10, r = 28, b = 8/7.
Remark

The most interesting statement in the theorem is statement 4). It means
that w - limit sets consist of orbits of solutions to the system. Taking a starting
point n on the limit set Q&) we get a trajectory ¢(t,n) that stays within this
set Q&) infinitely long both in the future and in the past.



A simple tool to satisfy conditions in this theorem is to find a compact
positively invariant set for the system that contains the point £. It can be
done using one of two methods discussed earlier.

Proofs of statements in the Theorem 4.38, are based on: general proper-
ties of compact sets for 1) ,2), simple contradiction arguments and the defini-
tion of limit sets for 3) and the translation property of the transition mapping
o(t, &), together with continuity of (¢, &) for 4), and a contradiction argument
togehter with the definition of w - limit sets for 5).

We will give a proof to 4).

Let n be a limit point for ¢(t,£): n € Q(§). By definition there is a sequence
of times {t,}, t — oo such that ¢(t,,&) — 7.

Consider the trajectory ¢(t,n) starting at 7. Denote by I, corresponding
maximal interval and consider an arbitrary ¢ € I,,, belonging o the maximal
interval I,,. We like to show that ¢(¢,7) € () that a trajectory starting in a
limit point stays in the limit point forever in future and in the past.

For n large enough ¢ + ¢, el sn € I¢ - belongs to the maximal interval I,
of the solution (¢, &) for n large enough.

We apply the group relation for ¢ (similar to Chapmen-Kolmogorov rela-

tion for linear systems)

¥ (Snag) =@ (t + tnag) =@ (ta ‘P(tnag))

It is possible since the domain D of (., .) is open, (¢,1) € D therefore there
is a ball B around (¢,n) such that (¢,¢(t,,£)) € B C D for n large enough
because ¢(t,,§) — 1. Therefore t € I,q, ¢).

By continuity of ¢ it follows:

lim=n

(5 &) = 9 (1 10,6) = (t,m,g)) Lpltn), m— oo

It means that ¢(t,7) is a limit point for ¢ (¢,&) for any ¢t € I,,.1



LaSalle’s invariance principle

We formulate now LaSalle’s invariance principle that generalizes ideas that
we discussed in the introductory example and gives a handy instrument for
localizing w - limit sets of non-linear systems in arbitrary dimension.

Theorem 5.12, p.180

Assume that f is locally Lipschitz f : G — R"™ as before and let ¢(t,¢)

denote the flow generated by the corresponding system

Let U C G be non-empty and open. Let V' : U — R be continuously
differentiable and such that Vi(2) = VV - f(2) < 0. forall z e U. If € € U is
such that the closure of the semi-orbit O (&) is compact and is contained in
U,

i) then R, C I¢ (maximal existence interval for £) and

ii) as t — oo, p(t,£) approaches the largest invariant set contained in
Vf_l(O) that is the set where V(z) = 0.

Proof.

Proof given in the solution of Exercise 5.9, on p. 312.

Set z(t) = ¢(t,&). By continuity of V' and compactness of the closure
c(O*(£)), V is bounded on O (§) and therefore the function V (¢(t,&)) is
bounded.

e Since

d
dt
forallt € Ry, V (z(t)) is non-increasing. We conclude that the limit lim; o, V' (z(t))

(V(x(t))) = Vy(x(t)) <0

of the non-increasing function V' (z(t)) must exist and is finite. We denote it
by A:
lim V (z(t)) = A

t—o0

e Take an arbitrary an arbitrary point z € Q(§) in the w - limit set
Q(&). Then by the definition of w - limit sets, there is a sequence {t,} in R,



such that lim,, .., ¢, = oo and
z(t,) = p(tn,§) = 2(ty) — 2, n— 00

We apply V' to the left and right hand side in this limit calulation.
For any continuous function F' and any convergent sequence { g, }it is valid
that
F(lim g,) = lim (F(g,)

e By the continuity of V it follows that V(z) = lim, . V (2(¢,)) and
limy, oo V (2(t,)) = limy_oo V (2(¢)) . Therefore

V(z) = nh_}IgOV (x(tn)) = tliglov (z(t)) = A

This key point in the proof (' ' ') implies that for all z in the omega limit
set ©(§) the test function V' has the same value:

V(z) =\ Vze Q) (1)

e By the invariance of ©2(§) with respect to ¢(t, .), if z € (&), then (¢, 2) €
Q(¢) for all t € R.(it is why the theorem is called the invariance ~prin-
ciple!!!)

Therefore V (¢(t,2)) = A for all ¢t € R is a constant function of time ¢. A

constant function must have zero derivative:

d

SV (elt,2)) = Vr (lt,2)) = 0

for all t € R. Since ¢(0,2) = z and z is an arbitrary point in () it follows
that

Vi) = GV (e )| =0 Veeqr) )

and therefore Q(&) € V7 (0).

e The statement of the theorem follows now from the Main theorem about



limit sets (Theorem 4.38), that states: () is an invariant set under the action
of ¢(t,.), and ¢(t, &) apporachs Q(§) as t — oc.l

Comment. It can be tempting to simplify the proof by concluding (1)
from the fact that (VV)(z) = 0 from all z € Q(£) which would imply (2).

However this conclusion is not valid, because the set €(£) is not open and
therefore V(z) = A, Vz € Q(§) does not imply V; (2) =0, Ve Q(¢).

The invalidity of this conclusion is illustrated by the following simple ex-
ample: V(z) = ||z||, (&) = {z € RY : ||z|| =1}, then v(z) = 1 for all z €
Q(8), but(VV) (2) = 2z # 0 for all z € Q(E).

The following theorem follows rather directly from LaSalle’s invariance
principle and gives a practical criterium for asympototically stable equilibrium
points using "weak" Lyapunov’s functions.

Theorem 5.15. p. 183.

Let U be an open domain U C G, such that 0 € U and a continuously
differentiable function V' : U — R such that

V(0)=0, V(z)>0,¥zeU\{0}, Vi(z)<0,VzeU\{0}

and {0} is the only invariant set contained in fol(O), then 0 is an asymptoti-
cally stable equilibrium.l]
Proof follows from LaSalle’s invariance principle and is a good exercise.
Theorem 5.22, p. 188. On global asymtotic stability

Assume that G = R". Let the hypothesis of the Theorem 5.15 hold with
U=G=R"

Namely for a continuously differential function V' : R"™ — R such that
V(0) =0, V(2) > 0 for all z € U\{0}, Vy(z) <0 for all z € U\{0}, the origin
{0} is the only invariant set contained in Vf_l(()).

If in addition the Lyapunov function V is radially unbounded:

V(z) = 00, |z — o0



then the origin 0 is a globally stable equilibrium that means that all solu-

tions ||¢(t,€)|| — 0, as t — oo.

Exercise 5.17

The aim of this exercise is to show that the condition of radial unbound-
edness in Theorem 5.22 is essential.

Let f: B2 — B2 be given by

. | (==, 22) if 2722 > 1
£(2) = f(21,22) = { Tage. s« e
Define V: R? - R by

2

.zz .
1+ 23

V(z) =V(z1,22) =27 +

(a) Show that the equilibrium 0 of (5.1) is asymptotically stable.

(b) Show that the equilibrium 0 is net globally asymptotically stahle.

(¢) Show that V" is not radially unbounded.
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Examples of using La Salle’s principle. Investigate stability of
equilibrium points in the origin.

Example.
/

= 2y

/

y= —z—(1-2%y
Show the asymptotic stability of the equilibrium point in the origin and

Consider the following system of ODEs:

find it’s domain of attraction. (4p)

Solution.

We try the test function V(z,y) = 2% + 2y that leads to cancellation of
mixed terms in the directional derivative V; along trajectories:

Vi(z,y) = day — doy — 4y*(1 — 2?) = —4y?*(1 — 2?) that is not positive
for |z| < 1. Therefore the origin is a stable stationary point. Checking the
behavior of the system on the set of zeroes to Vy(x,y) inside the stripe |z| < 1
we consider (V7)™ (0) = {(z,y) :y =0, |z| < 1}. On this set ¢ = —z and
the only invariant set in (V)" (0) is the origin. LaSalle’s invariance principle
implies that the origin is asymptotically stable and the domain of attraction
is the largest set bounded by a level set of V (x,y) = 2% + 212 inside the stripe
|z| < 1. The largest such set will be the interior of the ellipse z* + 2y* = C
such that is touches the lines x = +1. Taking points (£+1,0) we conclude that
1 = C. and the boundary of the domain of attraction is the ellipse 22 +2y% = 1
with halfs of axes 1 and v/0.5 :

f et
o 02 04 06 08 |1

The next theorem gives a simple criterion for having the whole space as
the domain of attraction for an asymptotically stable equilibrium point.

Example. Investigate stability of the equilibrium point in the origin.

11



We try our simplest choice of the Lyapunov function: V(z,y) = 2 + y* and

arrive to

Vi(z,y) = —2zy — 22" + 2ya®

It does not work because the expression Vy(z,y) includes two indefinite terms:
2xy and 2yx® that change sign around the origin. We try a more flexible
expression by looking on particular expressions in the right hand side of the
equation: V(x,y) = 25 + ay? where 0V /0x = 6x° with the same power of x
as in the equation, and the parameter a that can be adjusted later. V is a
positive definite function: V(0) = 0 and V(z) > 0 for z # 0.The level sets
to V look as flattened in y - direction ellipses. The curve 2% + 3% = 0.5 is
depicted:

¢ o
S N
[6;]
T T T T % T T 1]

0.4 -0.2.0.051 0 0.2 0.4 0.6 0.8

f L O
S R ¢ S
9
7T

Vi(z,y) = 62°(—y — 2°) + 2ay2® = —62°y + 202’y — 62°
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We get again two indefinite terms, but they are proportional and the choice
a = 3 cancels them:
Vi(z,y) = —62° <0

Therefore the origin is a stable equilibrium point. Vy(z,y) = 0 on the whole
y—axis that in our "general" theory is denoted by Vf_l(O).We check invariant
sets of the system on the set Vf_l(O). We observe that @’ = —z® (only this
fact is important) and 3’ = 0 (it does not matter for fol(O) that is y—axis).
Therefore {0} is the only invariant set on the y - axis. Trajectories starting
on the y - axis go across it in all points except {0}. The LaSalle’s invariance
principle implies that all trajectories approach {0} as t tends to infinity and
the origin is asymptotically stable.

The test function V(z) — oo as [|z|| — oo. It implies that the whole plain

is a region or domain of attraction for the equilibrium point in the origin.ll
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