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0.1 Transition matrix function, existence and equations.

The subject of this chapter of lecture notes is general non - autonomous linear systems of ODEs and in

particular systems with periodic coe¢ cients and Floquet theory for them.

The general theory for non - autonomous linear systems (linear systems with variable coe¤cients) is

very similar to one for systems with constant coe¢ cients. The existence is established through the solution

of the integral form of equations by iterations. Uniqueness is based on a general form of the Grönwall

inequality that is also proved here in a very similar fashion. These results lead to the fundamental result

on the dimension of the space of solutions that is based on the uniqueness result similarly to the proof for
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systems with constant coe¢ cients. The essential di¤erence from the case with constant coe¢ cients is that

in the case with variable coe¢ cients one cannot �nd analytical solutions except some particular cases as

systems with triangular matrices.

We consider the I.V.P. in the di¤erential

x0 = A(t)x(t); x(�) = � (1)

or in the integral form

x(t) = � +

Z t

�

A(s)x(s)ds (2)

with matrix valued function A : J ! RN�N (or CN�N) that is continuous or piecewise continuous on the
interval J . Here it is important that the initial time � is an arbitrary real number from J , not just zero.

The solution is de�ned as a continuous function x(t) on an interval I that includes point � acting into

RN or CN satisfying the integral equation (2). By a version of Calculus main theorem (Newton-Leibnitz

theorem) the solution de�ned in such a way will satisfy the di¤erential equation (1) in points t where A(t)

is continuous.

We remind the following lemma considered in the beginning of the course.

Lemma. The set of solutions Shom to (2) is a linear vector space.
�
It motivates us to search solution in the form �(t; s)� where �(t; s) is a continuous matrix valued

function on J � J and � is an arbitrary initial data at t = s : x(s) = �. It implies also that �(s; s) = I.

Substituting the expression x(t) = �(t; s)� into the integral form of the i.V.P. we arrive to the vector

equation

�(t; s)� = � +

Z t

s

A(�)�(�; s)�d� =)

�(t; s)� =

�
I +

Z t

s

A(�)�(�; s)d�

�
�

with arbitrary � 2 RN that implies the matrix equation for �(t; s):

�(t; s) = I +

Z t

s

A(�)�(�; s)d� (3)

or the same equation in di¤erential form valid outside points of disconituity of A(t):

d

dt
�(t; s) = A(t)�(t; s); �(s; s) = I:

We will solve the equation (3) by means of iterational approximations Mn(t; s) to �(t; s) introduced in the

following way:

M1(t; s) = I; Mn+1(t; s) = I +

Z t

s

A(�)Mn(�; s)d�; 8n 2 N (4)

Lemma 2.1 , p. 24 and Corollary 2.3, p. 26 in L&R
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For any closed and bounded interval [a; b] � J the sequence fMn(t; s)g converges uniformly on [a; b]�
[a; b] to a continuous on [a; b]� [a; b] matrix valued function �(t; s) that satis�es the integral equation (3).
Proof.
The classical idea of the proof is instead of considering Mn(t; s) to consider telescoping series with

elements fn+1(t; s) =Mn+1(t; s)�Mn(t; s), f1 =M1 = I, with partial sum that is equal to Mn:

Mn =

nX
k=1

fk

where fk(t; s) is represented as a repeated integral operator from (4):

M1(t; s) = I; M2(t; s) = I +

Z t

s

A(�)M1(�; s)d�;

M3(t; s) = I +

Z t

s

A(�1)M2(�1; s)d�1 =

= I +

Z t

s

A(�1)

�
I +

Z �1

s

A(�2)M1(�2; s)d�2

�
d�1

I +

Z t

s

A(�1)Id�1 +

Z t

s

A(�1)

Z �1

s

A(�2)M1(�2; s)d�2d�1

f3 = M3 �M2 =

Z t

s

A(�1)

Z �1

s

A(�2)M1(�2; s)d�2d�1

fn+1(t; s) =Mn+1(t; s)�Mn(t; s) =

Z t

s

A(�1)

Z �1

s

A(�2):::

Z �n�1

s

A(�n)d�n:::d�2d�1

for all (t; s) 2 J�J; 8n 2 N. Since A(t) is piecewise continuous on J , it�s norm is bounded on any compact
subinterval [a; b] � J :

kA(t)k � K 8t 2 [a; b]

We observe using triangle inequality for integrals several times, and the last estimate, that

kfn+1(t; s)k = kMn+1(t; s)�Mn(t; s)k � Kn

Z t

s

Z �1

s

:::

Z �n�1

s

d�n:::d�2d�1

and after calculating the integral
R t
s

R �1
s
:::
R �n�1
s

d�n:::d�2d�1 =
1
n!
(t � s)n, based essentially on

R
skds =

sk+1

k+1
:

kfn+1(t; s)k = kMn+1(t; s)�Mn(t; s)k �
Kn

n!
(t� s)n � Kn

n!
(b� a)n

The number series
P1

n=0
Kn

n!
(b � a)n is convergent to exp(K(b � a)): Therefore by the Weierstrass�

criterion the functional series
P1

n=1 fn(t; s) converges uniformly on [a; b]� [a; b] to the limit denoted here
by �(t; s). It implies by construction, that the sequence Mn(t; s) converges uniformly on [a; b] � [a; b] to
the limit denoted by �(t; s): Going to the limit in the relation de�ning iterations (4), we observe that the

limit functional matrix �(t; s) satis�es the equation (3).�
Since the interval [a; b] 2 J is arbitrary we may de�ne the function � : J = J � J ! RN�N (or CN�N)
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as the (pointwise) limit:

Mn(t; s)! �(t; s); n!1

for all (t; s) 2 J � J .
De�nition. The matrix �(t; �) is called transition matrix function.
Point out that �(t; t) = I. The product x(t) = �(t; �)� gives the solution to I.V.P. to the equation

x0(t) = A(t)x(t) with initial data x(�) = �. In the case when A(t) is only piecewise continuous, x(t) will be

continuous and satify the corresponding integral equation. It will satify the di¤erential equation outside

discontinuities of A(t).

Example. For an autonomous linear system with constant matrix A the transition matrix function is

�(t; �) = exp(A(t� �)):

0.2 Grönwalls inequality. Uniqueness of solutions.

Grönwall �s lemma. Lemma 2.4., p. 27 in L&R.
(We skip it for now. A simpler version was considered before)
Let I � R, be an interval, let � 2 I, and let g; h : I ! [0;1) be continuous nonnegative functions. If

for some positive constant c > 0,

g(t) � c+
����Z t

�

h(�)g(�)d�

���� 8t 2 I

then

g(t) � c exp
�����Z t

�

h(�)d�

����� 8t 2 I

Proof.
The proof uses the idea of integrating factor similar to the simpler case with constant h = kAk consid-

ered before. Introduce G;H : I ! [0;1) by

G(t) = c+

����Z t

�

h(�)g(�)d�

����
H(t) =

����Z t

�

h(�)d�

����
By the hypothesis in the lemma, 0 � g(t) � G(t):
We consider �rst the case � < t. Then integrals in the expressions for G and H are nonnegative:

G(s) = c+

Z s

�

h(�)g(�)d�; H(s) =

Z s

�

h(�)d�; 8s 2 [� ; t]

Di¤erentiation and the Newton - Leibnitz theorem imply

G0(s) = h(s)g(s) � h(s)G(s) = H 0(s)G(s); 8s 2 [� ; t]
G0(s)�H 0(s)G(s) � 0; 8s 2 [� ; t]
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Multiplying the inequality by exp(�H(s)) and observing that

(G0(s)�H 0(s)G(s)) exp(�H(s)) = (G(s) exp(�H(s)))0

we arrive to

(G(s) exp(�H(s)))0 � 0; 8s 2 [� ; t]

Integrating the last inequality from � to t we arrive to

(G(t) exp(�H(t))) � (G(�) exp(�H(�))) = c

Therefore we arrive to the Grönwalls inequality:

(G(t)) � c exp(H(t)) = c exp
�Z t

�

h(�)d�

�
The case when t < � is considered similarly by observing that for t < �

G(t) = c+

Z �

s

h(�)(�)d�; H(t) =

Z �

s

h(�)d�; 8s 2 [t; � ]

Do it as an exercise!

Uniqueness of solutions to I.V.P.

Theorem 2.5, p. 28 L&R
Let (� ; �) 2 J �RN(J �CN). The function x(t) = �(t; �)� is a unique solution to the I.V.P. (1):If y :

Jy ! RN or (CN) is a another solution to (1): then y(t) = x(t) for all t 2 Jy.
Proof.
The fact that x(t) = �(t; �)� is a solution to I.V:P. follows by construction and from the properties of

the transition matrix function. Only uniqueness must be proved. Consider function e(t) = x(t)� y(t) on
the interval Jy � J . By linearity it satis�es the equation

e(t) =

Z t

�

A(�)e(�)d�; 8t 2 Jy

Applying the triangle inequality for integrals we conslude that

ke(t)k �
Z t

�

kA(�)k ke(�)k d�; 8t 2 Jy

Point out that on an arbitrary bounded closed (compact) interval [a; b] � Jy the piecewise continuous A(�)
matrix valued function has a bounded norm kA(�)k < K:Therefore for any � ; t 2 [a; b]

ke(t)k �
Z t

�

K ke(�)k d�; 8t; � 2 [a; b]
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and by the simple variant of Grönwall �s inequality that we proved before, ke(t)k = 0 for all t 2 [a; b] and
therefore y(t) = x(t) for all t 2 Jy:

0.3 Solution space.

We have considered a particular variant of the following theorem in the case of linear systems of ODEs

with constant coe¢ cients. The formulation and the proof we suggested are based only on the fact that the

set of solutions Sh is a linear vector space and on the property of the uniquness of solutions. We repeat
this argument here again with some corollaries about the structure of the transition matrix �(t; �).

Proposition 2.7 (1), p.30, L&R.
Let b1; :::; bN be a basis in RN (or CN) and let � 2 J .
Let �(t; �) be a transition matrix to the equation

x0 = A(t)x

with A(t) being a matrix valued function A : J ! RN�N (or CN�N), piecewise continuous on the interval
J .

Then functions yj : J ! RN (or CN) de�ned as solutions

yj(t) = �(t; �)bj

with j = 1; :::; N to , the equation above form a basis of the solution space Sh of the equation.
In particular Sh is N -dimensional and for every solution x(t) : J ! RN (or CN) there exist scalars

1; :::N such that

x(t) =
NX
j=1

jyj(t)

for all t 2 J .
Proof
We can just repeat here the proof that we gave earlier. Point out that it is more general than one given

in the book.

Suppose that at some time t solutions yj(t) are linearly dependent. It means that there are constants

fajgNj=1 not all zero such that
NX
j=1

ajyj(t) = 0

at this time. On the other hand there is a solution that satis�es this condition. It is zero solution x�(t) = 0

for all t:

But then these two solutions must coinside because solutions are unique!!! Namely
PN

j=1 ajyj(t) = 0

for all times including t = � .Therefore
PN

j=1 ajyj(�) =
PN

j=1 ajbj = 0 because bj are initial conditions at

t = � for yj. It is a contradiction because vectors bj , j = 1; :::; N are linearly independent. Therefore yj(t)

with j = 1; :::; N are linearly independent for all t in J . �
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Example.
Calculate the transition matrix function �(t; s) for the system of equations(

x01 = t x1

x02 = x1 + t x2

x0 = A(t)x; A(t) =

"
t 0

1 t

#
x(�) = �

x(t) = �(t; �)�

Here the matrix A(t) is triangular.

The system of ODE above has triangular matrix and can be solved recursively starting from the �rst

equation.

The fundamental matrix �(t; �) sati�es the same equation, namely

d

dt
�(t; �) = A(t)�(t; �)

�(� ; �) = I

�(t; �) has columns �1(t; �) and �2(t; �) that at the time t = � have initial values [1; 0]T and [0; 1]T ,

because �(� ; �) = I =

"
1 0

0 1

#
:

We will use a general solution to the scalar linear equation x0 = p(t)x+g(t) with initial data x(�) = x0
calculated using the primitive function P(t; �) of p(t) :

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; s)g g(s)ds
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A derivation of this formula using the integrating factor idea follows.

x0 = p(t)x+ g(t); x0 = x(�)

P(t; �) =

Z t

�

p(s)ds

exp f�P(t; �)gx0 = exp f�P(t; �)g p(t)x+ exp f�P(t; �)g g(t)
exp f�P(t; �)gx0 � p(t) exp f�P(t; �)gx = exp f�P(t; �)g g(t)
exp f�P(t; �)gx0 + (exp f�P(t; �)g)0 x = exp f�P(t; �)g g(t)

[exp f�P(t; �)gx]0 = exp f�P(t; �)g g(t)Z t

�

[exp f�P(s; �)gx(s)]0 ds =

Z t

�

exp f�P(s; �)g g(s)ds

exp f�P(t; �)gx(t)� exp f�P(� ; �)gx0 =

Z t

�

exp f�P(s; �)g g(s)ds

exp f�P(t; �)gx(t)� exp f0gx0 =

Z t

�

exp f�P(s; �)g g(s)ds

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; �)g exp f�P(s; �)g g(s)ds

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; �)� P(s; �)g g(s)ds

P(t; �)� P(s; �) =

Z t

�

p(z)dz �
Z s

�

p(z)dz =

Z t

�

p(z)dz +

Z �

s

p(z)dz =Z t

s

p(z)dz = P(t; s)

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; s)g g(s)ds;

x(�) = x0

In the equation

x01 = t x1

the coe¢ cient p(t) = t, therefore P(t; �) =
R t
�
s ds =

�
1
2
s2
���t
�
= 1

2
(t2 � � 2) and the solution

x1(t) = exp(
1

2

�
t2 � � 2

�
)x1(�):

The second equation

x02 = t x2 + x1

is similar but inhomogeneous:

x2(t) = exp(P(t; �))x2(�) +
Z t

�

exp(P(t; s))x1(s)ds:
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Substituting P(t; �) = 1
2
(t2 � � 2) we conclude that= exp(1

2
(t2 � � 2))x2(�) +

R t
�
exp(1

2
(t2 � � 2))x1(�)ds

x2(t) = exp(
1

2

�
t2 � � 2

�
)x2(�) +

Z t

�

exp(
1

2

�
t2 � s2

�
) exp(

1

2

�
s2 � � 2

�
)x1(�)ds

= exp(
1

2

�
t2 � � 2

�
)x2(�) +

Z t

�

exp(
1

2

�
t2 � � 2

�
)x1(�)ds

And

x2(t) = exp(
1

2

�
t2 � � 2

�
)x2(�) + exp(

1

2

�
t2 � � 2

�
)(t� �)x1(�):

The fundamental matrix solution �(t; �) has columns that are solutions to x0 = A(t)x with initial data -

that are columns in the unit matrix:

"
1

0

#
and

"
0

1

#
,

Taking x1(�) = 1 and x2(�) = 0 we get x1(t) = exp(12 (t
2 � � 2)) with x2(t) = exp(12 (t

2 � � 2))(t� �)
Taking x1(�) = 0 and x2(�) = 1 we get x1(t) = 0 with x2(t) = exp(12 (t

2 � � 2)) and the fundamental
matrix solution in the form

�(t; �) = exp(
1

2

�
t2 � � 2

�
)

"
1 0

t� � 1

#

0.4 Group properties of transition matrix. Chapman - Kolmogorov rela-

tions.

remeber that in the case with autonomous systems the transition matrix �(t; �) = exp ((t� �)A) :
Therefore in this case

�(t; �) = exp f(t� �)Ag = exp f(t� �)Ag exp f(� � �)Ag
= exp f(t� �)A+ (� � �)Ag = �(t; �)�(�; �)

�(t; �) = �(t; �)�(�; �)

The transition matrix �(t; �) de�nes a transition mapping '(t; � ; �); that maps initial data � at time
� into the state '(t; � ; �) = x(t) = �(t; �)� of the system at time t.

Let us consider two consequtive solutions of the equation x(t) = �(t; �)� and y(t) = �(t; �) (�(�; �)�)

that continue each other in the time point t = � where the second solution y(t) attains the initial state

that is the point where the the �rst solution x(t) arrives at time t = �. Together with the uniquness

of solutions, this consideration leads to the group property of the transition mapping and the transition

matrix. The group property means that moving the system governed by the equation x0(t) = A(t)x(t)

from time � to time t is the same as to move it �rst from time � to time � (blue curve) and then to move

it without break from time � to time t (red curve)

�(t; �)� = �(t; �) [�(�; �)�]
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Point out that these two "movements" do not need to go both in the positive direction in time as it is

in the picture. One of these movements (or both) can go backward in time. Another observation is that

the linearity of the system was not essential for this reasoning, only the uniqueness of solutions. We will

use a similar argument later for non-linear systems.

We have proven (almost) the following theorem.

Corollary 2.6, p.29 L&R (Chapman - Kolmogorov relations)
For all t, �, � 2 J

�(t; �) = �(t; �)�(�; �); (5)

�(t; t) = I;

�(� ; t)�(t; �) = �(� ; �) = I

�(� ; t) = (�(t; �))�1 (6)

Proof.
The �rst statement has been proven already. The second follows from the integral equation for the

transfer matrix. The third one follows from the �rst two. We apply the �rst statement �(t; �) �(� ; t) =

�(t; t) = I therefore �(� ; t) is the right inverse of �(t; �). The same argument for this expression with t

and � changed their roles leads to that �(� ; t) is the left inverse of �(t; �).�

0.5 Fundamental matrix solution.

Introducing the transition matrix function �(t; �) for non-autonomous system of equations was similar to

considering exp(A (t� �)) for autonomous linear systems. We have got a solution to an arbitrary I.V.P.
by multiplying arbitrary initial data x(�) = � with the the transition matrix function: x(t) = �(t; �)�.

On the other hand we could construct a general solution to an autonomous linear system just by taking
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a linear combination of N linearly independent solutions to the system, because the dimension of the

solution space is equal to N .

The situation is exactly the same for non-autonomous linear systems with the di¤erence that we in

general cannot �nd a basis for the space of solutions analytically. It is possible only in some particular

cases, for example for a triangular matrix A(t).

De�nition.
The functon t 7�! 	(t) 2 Rn�nis called the fundamental matrix solution for the system x0 = A(t)x,

x 2 Rn if it�s columns 	k(t), k = 1; :::; N are linearly independent solutions to the system (and therefore

build a basis to the solution space): 	0k(t) = A(t)	k(t)

It follows from the de�nition of the matrix product that

	0(t) = A(t)	(t)

General solution to the system is a linear combination of these vector valued functions:

x(t) = 	(t)C

with an arbitrary constant vector C 2 RN .
The fundamental matrix solution 	(t) is an invertible matrix for all t because it�s columns are linearly

independent for all t.

There is a simple connection between an arbitrary fundamental matrix solution 	(t) and the transition

matrix �(t; �).

Proposition 2.8 , p. 33

�(t; �) = 	(t)	�1(�)

Proof.
The product X(t; �) = 	(t)	�1(�) satis�es the equation

X 0(t; �) = A(t)X(t; �)

in all points t 2 J where A(t) is continuous, because each column in 	(t) does it. On the other hand
	(�)	�1(�) = I. Therefore X(t; �) = 	(t)	�1(�) satis�es the integral equation

X(t; �) = I +

Z t

�

A(�)X(�; �)d�

in all points t 2 J because each column in 	(t) does it. The same equations are satis�ed by �(t; �). By
the uniqueness of solutions to linear systems �(t; �) = X(t; �) = 	(t)	�1(�).

This proposition shows another way to calculate the transition matrix solution, because sometimes it

is easier to �nd some basis for the space of solutions and to put it into a matrix 	(t) instead of solving

the matrix equation for �(t; �).

Point out that it is easy to �nd a solution to the equation for 	�(t) with initial data 	�(�) = I. For
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such a solution the formula connecting �(t; �) simpli�es to �(t; �) = 	�(t) because 	�1� (�) = I.

0.6 Abel - Liouville�s formula.

Lemma about the derivative of a determinant of a matrix valued function.
Let B : J ! RN�N be di¤erentiable. Then the derivative of it�s determinant satis�es the following

formula

(det(B(t))0 =
NX
k=1

det (Uk(B))

where matrices Uk(B) have the same columns bk(t) as the matrix B(t) = [b1(t); :::; bN(t)] except the k -th

column exchanged by the column of derivatives of the k-th column in B(t):

Uk(B) =

�
b1(t); :::;

�
d

dt
bk(t)

�
; :::; bN(t)

�
A similar relation can be written for rows instead of columns.

An elementary proof can be carried out using the de�nition of derivative as a limit of a �nite di¤er-

ence and repeated application of the addition formula for determinants. Prove it as an exercise on
properties of determinants!
Consider a homogeneous linear system of ODEs x0(t) = A(t)x(t) and N solutions y1(t); y2(t),...,yN(t)

to it. Consider the matrix Y (t) having these solutions as it�s columns:

Y (t) = [y1(t); y2(t); :::; yN(t)]

De�nition.
The determinant

w(t) = detY (t) = det [y1(t); y2(t); :::; yN(t)]

is called Wronskian associated with solutions y1(t); y2(t); :::; yN(t).

Proposition 2.7 part (2) - Abel - Liouville�s formula
Wronskian w(t) associated with solutions y1(t); y2(t),...,yN(t) to the system x0(t) = A(t)x(t) satis�es

the following relations:

w(t) = w(�) det�(t; �)

In points t where A(t) is continuous it satis�es the di¤erntial equation

w0(t) = tr(A(t))w(t)
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and therefore with initial value for w(�) at time � :

w(t) = w(�) exp

�Z t

�

tr(A(s))ds

�
(7)

for all t 2 J .�

Proof.
We use here that yk(t) = �(t; �)yk(�) and therefore Y (t) = �(t; �)Y (�). It implies that

w(t) = detY (t) = detY (�) det�(t; �) = w(�) det�(t; �)

giving the �rst statement of the Proposition.

We denote by 'k(t) columns in �(t; �), so that �(t; �) = ['1(t); '2(t); :::; 'N(t)].Then we apply the

Lemma about the derivative of a determinant of a matrix valued function to the case B(t) =
�(t; �). A direct substitution implies that

@

@t
(det�(t; �)) =

NX
k=1

det (Uk(�(t; �))) =
NX
k=1

det

��
'1(t); :::;

@

@t
('k(t)) ; :::; 'N(t)

��

where the k-th column in Uk(�(t; �)) is @
@t
('k(t)) and other columns are columns 'j(t), j 6= k, j = 1; :::N

from �(t; �):
@
@t
('k(t)) = A(t)'k(t), because 'k(t) are solutions to the system x0(t) = A(t)x(t). We assume here

that � is not a point of discontiuity for A(t). It leads to the more explicit expression:

@

@t
(det�(t; �)) =

NX
k=1

det (Uk(�(t; �))) =
NX
k=1

det (['1(t); :::; A ('k(t)) ; :::; 'N(t)])

Setting t = � , into the last formula for we arrive to

@

@t
(det�(t; �))

����
t=�

=
NX
k=1

det ([e1; :::; A(�)ek; :::; eN ])

because�(� ; �) = I = [e1; :::; ek; :::; eN ]. Observe thatA(�)ek = [A(�)]k - is the k-th column inA(�):Matrices

under the determinant sign in the last formula are diagonal with all elements equal to one except one equal

to [A(�)]k. Its determinant is the product of diagonal elements det ([e1; :::; A(�)ek; :::; eN ]) =A(�)kk:Therefore

@

@t
(det�(t; �))

����
t=�

=
NX
k=1

det ([e1; :::; [A(�)]k ; :::; eN ]) =
NX
k=1

Akk(�) = trA(�)
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det [e1; :::; [A(�)]k ; :::; eN ] = det

26666664
1 0 A13 0 0

0 1 A23 0 0

0 0 A33 0 0

0 0 A43 1 0

0 0 A53 0 1

37777775 ; k = 3

= 1� 1� A33 � 1� 1 = A33

Therefore

w0(�) = w(�)trA(�)

The argument given here applies to any � 2 J that is not a point of discontinuity for A(t). The expression

w(t) = w(�) exp

�Z t

�

tr(A(s)ds

�
w(t) = detY (t)

follows by integration of the di¤erential equation for w(t) using method of integrating factor applied to a

scalar �rst order linear equation.�

Interesting observations with application of Abel - Liouville�s formula.
The geometric meaning of determinant det(C) of the matrix C = [c1; :::cN ] with columns c1; :::cN is

volume of the parallelepiped V build on vectors c1; :::cN :

jdet(C)j = vol (V )

One can de�ne V formally as V =
n
x 2 RN : x =

PN
k=1 ak ck; ak 2 [0; 1]; k = 1; :::; n

o
:

It implies that the Abel - Liouvilles formula gives an exact description of how for example the volume

of a unique cube build on standard basis vectors e1; :::; eN given at the initial time � is changing by the

"�ow" described by the transition matrix function �(t; �).

0.7 Non-homogeneous linear systems and Duhamel�s formula in general case.

We consider the I.V.P. for non-homogeneous linear system

x0(t) = A(t)x(t) + b(t); x(�) = �; (� ; �) 2 J � RN(J � CN)

We suppose here that A : J ! RN�N (or CN�N) is continuous or piecewise continuous and denote
by �(t; �) the transition matrix function generated by A(t). We rewrite the I.V.P. for the system also in

integral form

x(t) = � +

Z t

�

(A(�)x(�) + b(�)) d�;

that allows to consider continuous solutions in the case when A is only peacewie continuous. In this case

solutions satisfy the di¤erential form of the problem in time points outside of discontinuties of A.
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Theorem 2.15, p. 41 L&R
Let (� ; �) 2 J � RN :The function

x(t) = �(t; �)� +

Z t

�

�(t; �)b(�)d�;

is a unique solution to the I.V.P. above.

Proof. A simpler proof can be given for points t outside the discontinuties of A.
Apply the Chapman-Kolmogorov relation to the transition matrix under the integral: �(t; �) =

�(t; 0)�(0; �) and calculate derivative of the integral in the expression for the solution.

d

dt

�Z t

�

�(t; �)b(�)d�

�
=

d

dt

�Z t

�

�(t; 0)�(0; �)b(�)d�

�
=
d

dt

�
�(t; 0)

Z t

�

�(0; �)b(�)d�

�
=

�
d

dt
�(t; 0)

�Z t

�

�(0; �)b(�)d� +

�
�(t; 0)

d

dt

�Z t

�

�(0; �)b(�)d�

��
= A�(t; 0)

Z t

�

�(0; �)b(�)d� + �(t; 0)�(0; t)b(t)

Observe that by Chapman -Kolmogorov relation �(t; 0)�(0; t) = �(t; t) = I, and �(t; 0)�(0; �) =

�(t; �): It implies simpli�cations in the last formula and �nally

d

dt

�Z t

�

�(t; �)b(�)d�

�
= A

�Z t

�

�(t; �)b(�)d�

�
+ b(t)

Therefore
R t
�
�(t; �)b(�)d� is the solution to the inhomogeneous equation with initial condition zero.

Together with the solution �(t; �)� to the homogeneous equation, satisfying the initial condition �(� ; �)� =

� we conclude that x(t) = �(t; �)� +
R t
�
�(t; �)b(�)d�; is a solution to the I.V.P. above. The uniqueness

follows if we consider di¤erence between two solutions x(t) and y(t) with the same initial condition:

z(t) = x(t) � y(t) that evidently satis�es the homogeneous equation z0(t) = A(t)z(t) and the zero initial
condition z(�) = 0. The known result for homogeneous linear systems based on Grönwall�s inequality

implies that z(t) = 0 on J .

Another proof based on the integral formulation of the problem and on the explicit checking that x(t)

expressed as in the formulation of the theorem satis�es it, is given in the book on the page 41.

1 Systems with periodic coe¢ cients: Floquet theory

We consider here linear homogeneous systems of ODE�s with J = R and a continuous or piecewise contin-

uous matrix A : R! RN�N (or CN�N); with period p > 0:

x0(t) = A(t)x(t); A(t+ p) = A(t); 8t 2 R
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Let � be a transition function generated by a periodic A(t).

Shifting invariance property.(formula 2.31, p. 45 in L.R.)
We are going to prove an important shifting invariance property of this transition matrix function,

namely that

�(t+ p; � + p) = �(t; �) (8)

Structure of the transition matrix for a time interval including a �nite number of periods.
(formula 2.32, p. 45 in L.R.)
(Motivation to introducing the monodromy matrix)
Another property specifying further how the periodicity of the system in�uences properties of solutions.

�(t+ p; �) = �(t; 0)�(p; 0)�(0; �) (9)

�(t+ n p; �) = �(t; 0) [�(p; 0)]n�(0; �) (10)

for any (t; �) 2 R� R.
De�nition of the Monodromy matrix
The matrix �(p; 0) for a periodic linear system with period p is called the monodromy matrix (this

standard notion is not used in the book)

Proof of the shifting invariance property.
This �rst property is untuitively clear.

The matrix �(t; �) satis�es the equation

@

@t
�(t; �) = A(t)�(t; �)

with initial condition ;�(t; �)jt=� = I.
The matrix �(t+ p; � + p) satis�es the equation

@

@t
�(t+ p; � + p) = A(t+ p)�(t+ p; � + p)

with initial condition ; �(t+ p; � + p)jt=� = I :
Now we observe that A(t) = A(t+ p). Substituting it in the second equation we get the equation

@

@t
�(t+ p; � + p) = A(t)�(t+ p; � + p)

with the same initial condition;�(� + p; � + p) = I on the interval t 2 [� ; t):
It implies that �(t; �) and �(t+p; �+p) satisfy in fact the same equation with the same initial conditions

�(t+ p; � + p)jt=� = I . The uniquness of solutions implies that they must be equal: �(t + p; � + p) =

�(t; �):

A prove using the integral form of the equation is presented in the course book.�
Proof of the structure of the transition matrix for periodic system
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The proof is based on a combination of the shifting property with the Chapman-Kolmogorov relations.

�(t+ p; �)
Ch:�Kol:
= �(t+ p; � + p)�(� + p; �)

Shift
= �(t; �)�(� ; � � p)

Ch:�Kol:
= �(t; �)�(� ; 0)�(0; � � p) Ch:�Kol:_and_Shift= �(t; 0)�(p; �)

Ch:�Kol:
= �(t; 0)�(p; 0)�(0; �)

The second equality for the shift n p in n periods p in time is derived by the repetition of the last

argument and induction

�(t+ np; �)
Ch:�Kol:
= �(t+ np; � + np)�(� + np; �)

Shift
= �(t; �)�(� ; � � np)

Ch:�Kol:
= �(t; �)�(� ; 0)�(0; � � np) Ch:�Kol:= �(t; 0)�(np; �)

Ch:�Kol:
= �(t; 0)�(np; 0)�(0; �)

and from the observation that �(np; 0) = �(np; np � p):::�(kp; kp � p):::�(2p; p)�(p; 0) = [�(p; 0)]n that
follows from the Chapman-Kolmogorov relation and from the fact that �(t; 0) satis�es the same equation

on each interval [kp; (k + 1) p], (shift invariance property) because A(t) = A(t + p) is a periodic matrix

with period p.

�
Example illustrating ideas of Floquet theory on a scalar linear equation.
Consider the following scalar linear equation with periodic coe¢ cient A(t) = (sin(4t)� 0:1) with period

p = 0:5�:

dx

dt
= (sin(4t)� 0:1)x;

We will �nd the monodromy matrix for this simple equation and demonstrate all objects related to the

Floquet theorem.

The exact general solution is:

x(t) = C exp (�0:25 cos (4t)� 0:1t)

with arbitrary constant C; can be found by the method with integrating factor.

To �nd the solution equal to 1 at t = 0 that is the transfer "matrix" in the scalar case, we calculate

the expression exp (�0:25 cos (4:0t)) e�0:1tjt=0 = 0:778 8 and choose C = 1
0:778 8

in the expression for the

general solution x(t).

The transfer "matrix" is:

�( t; 0) =
1

0:778 8
exp (�0:25 cos (4:0t)) e�0:1t

The period of the coe¢ cient in the system is p = 0:5� and the monodromy matrix is �( p; 0) =
�( 0:5�; 0):
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�( p; 0) = 1
0:778 8

exp (�0:25 cos (4:0t)) e�0:1t
��
t=0:5�

= 0:854 64

The eigenvalue � of the (1x1) "monodromy matrix" �( p; 0) coinsides with it�s value: � = 0:854 64 < 1

and is strictly less than 1.

Consider the logarithm G = ln (�( p; 0)) of the monodromy matrix �( p; 0):

G = ln (�( p; 0)) = ln(
1

0:778 8
exp (�0:25 cos (4:0t)) e�0:1t)

����
t=0:5�

= �0:157 08

F = G
p
= �0:157 08

0:5�
= �0:1 < 0

Therefore the eigenvalue � = �0:1 of the "matrix" F = 1
p
G is negative.

The transfer matrix to the system

y0(1) = Fy(t)

is

exp(Ft) = exp(t
G

p
) = exp(�0:1t):

Compare black and green graphs for exp(tG
p
) and for �( t; 0) = 1

0:778 8
exp (�0:25 cos (4:0t)) e�0:1t . Observe

that exp(tG
p
) and �( t; 0) coinside in points t = pn = (0:5�)n, n = 1; 2; 3:::

Introduce a "corrector" multiplicator �(t) introduced so that

�( t; 0) = �(t) exp(t
G

p
)

Observe that

�(t) =
1

0:778 8
exp (�0:25 cos (4:0t))

is a p = 0:5� - periodic function equal to 1 in all points t = pn = (0:5�)n, n = 1; 2; 3:::(red graf).

302520151050

1.5

1.25

1

0.75

0.5

0.25

x

y

x

y

We are going to observe soon that a similar representation of the transfer matrix �( t; 0) is possible for

an arbitrary periodic linear systems of ODEs and for it�s transfer matrix �( t; 0):

18



The main idea of the Floquet theory.
The monodromy matrix �(p; 0) is a particular transition matrix that maps initial data at time � = 0

to the state of the system after one period p. A particular property of this matrix in the case of periodic

systems is that similar the mapping to the state at the time t = np equal to n periods is just

�(n � p; 0) = [�(p; 0)]n

This property is similar to properties of autonomous linear systems where �(t; 0) = exp(At) and

therefore

�(n � p; 0) = exp(A(n � p)) = [exp(A(p))]n = [�( p; 0)]n (11)

that follows from the factorisation property of the exponent of two commuting matrices:

exp(A+B) = exp(A) exp(B)

In the case of periodic systems this factorisation applies only for shifts in time that are integer numbers

of periods. But it is still a remarkable property. The behaviour of solutions is described by a repeated

multiplication by a constant matrix in certain time points: p, 2p, 3p, ...:

x0(t) = A(t)x(t); x(0) = �:

x(np) = [�( p; 0)]n � ; n = 0; 1; 2; :::

The �rst idea of the Floquet theory is to represent x(np) at times t = np similarly as for autonomous

systems, namely with the help of an exponent of some constant matrix F times the time argument: t = np.

x(np) = [�( p; 0)]n � = exp(npF )� = [exp(pF )]n �

It means that the matrix F in such representation must satisfy the relation

�( p; 0) = exp(pF ):

Therefore the matrix pF must be something like the logarithm of the monodromy matrix:

pF = log(�( p; 0))

De�nition. A matrix G 2 CN�N is called a loragithm of the matrix H 2 CN�N if

H = exp(G)

We write in this case G = log(H).

We are going to prove soon that for any non-singular matrix H there is a logarithml log(H) in this

sense. Point out that the monodromy matrix �( p; 0) is always non-singular, because columns in a transfer
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matrix �( t; 0) are always linearly independent.

The logarithm of a matrix is not uniquely de�ned in the same way as it is not unique for complex and

real numbers z:

ln(z) = ln(jzj) + i arg(z) (12)

because the argument arg(z) of a complex number is de�ned only up to 2�k, k = �1;�2; ::::
One can choose a unique branch for the logarithm function, called the principle logarithm or Log (z)

by choosing the argument in the last formula (12) only in the interval [0; 2�).

We will suspend the discussion of matrix logarithm now and will consider �rst an application of it to

the analysis of solutions to periodic linear systems of ODEs.

The main idea in the Floquet theory is the "approximation" of the transfer matrix �( t; 0) for a periodic

linear system with matrix A(t) = A(p+ t) by the transfer matrix exp (t F ) for an autonomous system

y0(t) = [F ] y(t)

with the constant matrix F =
h
1
p
G
i
where

G = log(�( p; 0)) (13)

exp(G) = �( p; 0) (14)

exp(pF ) = �( p; 0) (15)

exp(npF ) = [�( p; 0)]n = �(np; 0) (16)

These two transfer matrices coinside in points t = 0; p; 2p; 3p; :::

�(np; 0) = [�( p; 0)]n = exp ((np) [F ]) (17)

The deviation of �( t; 0) from exp (t F ) in intermediate points within one period can be expressed by a

factor �(t) so that

�( t; 0) = �(t) exp (tF )

The matrix function �(t) must be equal to the unit matrix I in the points t = 0; p; 2p; ::: because in these

points these two transfer functions coinside by construction, see (17).

The exact formulation of the properties of such factorization is given in the following Theorem by

Floquet.
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Theorem 2.30 , p. 53. Floquet theorem
Let G 2 CN�N be a logarithm of the monodromy matrix �( p; 0).

G = log(�( p; 0))

There exists a periodic with period p piecewise continuously di¤erentiable function �(t) : R ! CN�N ,
with �(0) = I and �(t) non-singular (invertible, all eigenvalues are non-zero) for all t, such that

�( t; 0) = �(t) exp

�
t

p
G

�
, 8t 2 R (18)

Proof.
We remind the main property (9) of the monodromy matrix for � = 0:

�( t+ p; 0) = �( t+ p; p)�( p; 0) = �( t; 0)�( p; 0)

where we applied �rst the Chapman Kolmogorov relation (5) and then the shift invariance (8) of the

transfer matrix function �( t; �) for a periodic linear system

We denote 1
p
G by F for convenience, so that G = pF , and de�ne the function �(t) after the desired

relation (18)

�(t) = �( t; 0) exp

�
� t
p
G

�
= �( t; 0) exp (�tF )

The function �(t) is well de�ned in such a way. The problem is to show that it has desired properties:

p - periodicity and satis�es initial conditions.

We remind that �(0) = I and even �(np)= I for all n = 0; 1; 2; 3; :::

�( t; 0) is piecewise contiuously di¤erentiable or contiuously di¤erentiable depending on if A(t) is piece-

wise continuous or continuous. Therefore �(t) has the same property because exp
�
� t
p
G
�
is continously

di¤erentiable. �(t) is also invertible for all t as a product of two invertible matrices �( t; 0) and exp (�tF ).
We check now that �(t) is p - periodic, namely that �(t+ p) = �(t) for all t 2 R.

�(t+ p) = �( t+ p; 0) exp (�(t+ p)F )

= �( t+ p; 0) exp (�pF ) exp (�tF ) = �( t+ p; 0)
�( 0;p)z }| {

exp (�G) exp (�tF )

We remind that exp(G) = exp(log(�( p; 0)) = �( p; 0), therefore exp (�G) = (exp (G))�1 = �( p; 0)�1 =
�( 0; p). Therefore, using the main relation for the monodromy matrix (??) �( t + p; 0) = �( t; 0)�( p; 0)
together with the relation exp (�G) = �( 0; p); we arrive to

�(t+ p) = �( t; 0)

�( p;p)=Iz }| {
�( p; 0)�( 0; p) exp (�tF ) = �( t; 0) (I) exp (�tF ) def= �(t);

where we also used that �( p; 0)�( 0; p) = I in the last step. Therefore �(t) is periodic with period p.�
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1.1 Logarithm of a matrix. Existence and calculation.

We will formulate a theorem and give a proof to it (simpler than in the book) about the existence of a

matrix logarithm.

De�nition
The matrix G is a logarithm of matrix H or G = log(H) if exp(G) = exp(log(H)) = H:

Consider a nonsingular matrix H and it�s a canonical Jordan form J :

H = TJT�1

where T is invertible matrix. Then if there is Q 2 CN�N , such that exp(Q) = J that means

Q = log(J); J = exp(Q)

then according to the properties of the exponent of similar matrices, and the de�nition of matrix logarithm

H = TJT�1 = T exp(Q)T�1 = T exp(log(J))T�1 =

= exp
�
T log(J)T�1

� def
= exp(log(H))

and

log(H) = T log(J)T�1

where we used that if A = TBT�1 then exp(A) = T exp(B)T�1:

It means that to calculate logarithm of an arbitrary matrix H it is enough to calculate the logarithm

of it�s Jordan canonical form. For H = TJT�1

log(H) = T log(J)T�1

De�nition.
We say that G is a principal logarithm G = Log(H) of the matrix H if G is a matrix logarithm of H

and

�(H) = fexp(�) : � 2 �(G)g
�(G) = fLog(�) : � 2 �(H)g

where Log(�) is the scalar principal logarithm:

z = eLog(z); arg(Log (z)) = Im(Log (z)) 2 [0; 2�):

This de�nition implies the explicit one to one correspondence between eigenvalues to H and eigenvalues

to G. Essentially the second relation is non-trivial.

Theorem:Proposition 2.29, p. 53.
If H 2 CN�N is invertible, then there exists a principle logarithm Log (H) :
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Proof.
We have established above that it is enough to investigate existence of logarithm for the similar canonical

Jordan form J of the matrix. So without loss of generality we may assume that H is canonical Jordan form

J . Exponent of a Jordan matrix consists of exponents of it�s blocks. Therefore it is enough to establish

the existence of logarithm for each Jordan block Jj in J , j = 1; :::; s where s is the number of distinct

eigenvectors to H and Jj has size nj � nj

Jj =

26666666664

�j 1 0 ::: 0 0

0 �j 1 ::: 0 0
...

...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: �j 1

0 0 0 ::: 0 �j

37777777775
Jj = �j

�
I + 1

�j
Nj

�
where

Nj =

26666666664

0 1 0 ::: 0 0

0 0 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

37777777775
From the classical Maclaurin series for log(1 + x) =

1P
p=1

(�1)p+1
p

xp valid for jxj < 1; and for exp we get

exp(log(1 + x)) = 1 + x

We formally write the Maclaurin series for log(1 + 1
�j
Nj) :

log

�
I +

1

�j
Nj

�
=

nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p

and observe that the Maclaurin series for log(1 + 1
�j
Nj) is a �nite sum because all larger powers of Nj in

the series cancel. We have therefore that

exp

�
log

�
I +

1

�j
Nj

��
= I +

1

�j
Nj

and

exp (log(�j)I) exp

�
log

�
I +

1

�j
Nj

��
exp

�
log(�j)I + log

�
I +

1

�j
Nj

��
= �j

�
I +

1

�j
Nj

�
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We de�ne

Gj
def
= log(�j)I +

nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p
Then we check that this expression Gj is actually a matrix logarithm log (Jj) for the Jordan block Jj by

checking that is satis�es the de�nition of the matrix logarithm. Point out that the diagonal matrix log(�j)I

commutes with any matrix. Therefore applying formula exp(log(1 + x)) = 1 + x for series for exp(x) and

log(1 + x) to similar converging series of commuting matrices we arrive to the desired relation.

exp(Gj) = exp

 
log(�j)I +

nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p !

= exp (log(�j)I)) exp

 
nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p !

= exp (log(�j)I) exp

�
log

�
I +

1

�j
Nj

��
= �j

�
I +

1

�j
Nj

�
= Jj

In the Jordan canonical form J eigenvalues stand on diagonal and are easy to control. All calculations

that we have carried out are correct because �j 6= 0. We can choose logarithms log(�j) in these calculations
as principle values of logarithm Log(�j). In this case the logarithm of Jj will be principal logarith, because

there will be one to one correspondence between eigenvalues �j to Jj and eigenvalues Log (�j) to Log (Jj)

that are diagonal elements in corresponding matrices. They will have the same algebraic multiplicity and

the same geometric multiplicity 1 (one linearly independent eigenvector for each Jordan block)

Therefore the existense of the principal logarithm is established also for J and for H; that is a matrix

similar to J . The same correspondence as above is valid for the eigenvalues to H and to Log(H) because

eigenvalues to similar matrices H and J are the same. The number of linearly independent eigenvectors

corresponding to each distinct eigenvalue (geometric multiplicity) will be also the same.�
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1.2 Floquet multiplicators and exponents and bounds of solutions to peri-

odic systems. equations.

De�nition.
Eigenvalues of the monodromy matrix �( p; 0) are called Floquet�s multipliers or characteristic

mutipliers.
A Floquet multiplier is called semisimple if it is semisimple as an eigenvalue to the monodromy matrix

�( p; 0):

De�nition.
Eigenvalues of the logarithm of the monodromy matrix are called Floquet�s exponents or characteristic

exponents.

Theorem 2.31, p.54 on boundedness and zero limits of solutions to periodic linear systems.
1) Every solution to a periodic linear system is bounded on R+ if and only if the abosolute value of each

Floquet multiplier is not greater than 1 and any Floquet multiplier with absolute value 1 is semisimple.

2) Every solution to a periodic linear system tends to zero at t!1 if and only if the absolute value

of each Floquet multiplier is strictly less than 1.

Proof.
By Floquet theorem any solution x(t) to system

x0(t) = A(t)x(t); A(t+ p) = A(t), 8t 2 R (19)

satisfying initial conditions

x(�) = �

is represented as

x(t) = �( t; �)� = �(t) exp(tF )�( 0; �)� = �(t)

y(t)z }| {
exp(tF )�

= �(t)y(t)

where

F =
1

p
Log(�( p; 0)); � = �( 0; �)�:

�(t) is a p - periodic continuous or piecewise continuous matrix valued function. �(t) is invertible for

all t.

We de�ne y(t) = exp(tF )� as a solution to the equation

y0(t) = F y; y(0) = � (20)

y(t) = ��1(t)x(t), and x(t) = �(t)y(t). The mapping �(t) determines a one to one correspondence

between solutions x(t) to the periodic system (19) and solutions y(t) to the autonomous system (20).The
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periodicity and continuity properties of �(t) and ��1(t) imply that there is a constant M > 0 such that

k�(t)k �M and k��1(t)k �M for all t 2 R. It implies that kx(t)k �M ky(t)k and ky(t)k �M kx(t)k.
Therefore

1)kx(t)k is bounded on R+ if and only if corresponding ky(t)k = kexp(tF )�k is bounded on R+:
2) kx(t)k ! 0 when t!1 if and only if corresponding ky(t)k ! 0 when t!1:
Since Log (�( p; 0)) = G = pF , and �( p; 0) = exp(pF ) it follows that

� (�( p; 0)) = fexp(�p) : � 2 �(F )g

� (F ) =

�
1

p
Log(�) : � 2 �(�( p; 0))

�
and that algebraic and geometric multiplicities of each � 2 �(F ) coinside with those of exp(p�) 2
� (�( p; 0)) :We use now that

Log(z) = ln(jzj) + i arg(z)
exp(z) = exp(Re z)(cos(arg z) + i sin(arg z)

The following connections between properties of Floquet multipliers and propertis of corresponding

eigenvalues to the matrix F = 1
p
Log(�( p; 0)) are a direct consequence:

a) The Floquet multiplier � 2 �(�( p; 0));hasj�j < 1 if and only if ReLog(�) < 0 that is if the

corresponding eigenvalue � = 1
p
Log(�) to F has ReLog(�) < 0:

b) The Floquet multiplier � 2 �(�( p; 0));has j�j � 1 if and only if ReLog(�) � 0 that is if the

corresponding eigenvalue � = 1
p
Log(�) to F has ReLog(�) � 0:

c) The Floquet multiplier � 2 �(�( p; 0)); with j�j = 1 is semisimple if and only if the corresponding
eigenvalue � = 1

p
Log(�) to F having ReLog(�) = 0 is semisimple.

Known relations between properties of solutions to an autonomous system and the spectrum of corre-

sponding matrix applied to the system y0(t) = F y and to the spectrum �(F ) of the matrix F together

with statements 1),2), a),b),c) in the present proof imply the statement of the theorem.�
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Proposition 2.20. p. 45. On periodic solutions to periodic linear systems
The system x0(t) = A(t)x(t) with p - periodic A(t) = A(t + p) has a non-zero p - periodic solution if

and only if the monodromy matrix �(p; 0) has an eigenvalue � = 1. A more general statement is also valid.

The system has a non-zero n p - periodic solution for n 2 N if and only if the monodromy matrix �(p; 0)
has an eigenvalue � such that �n = 1.�
Proof. Consider an eigenvector v corresponding to this eigenvalue �. Then v 6= 0, �(p; 0)v = �v and

[�(p; 0)]n v = �nv = v

We will show that the solution to the system, with initial data x(0) = v has period np. This solution

is given by the transition matrix: x(t) = �(t; 0)v. Using this representation and applying the factorisation

property of transition matrices for periodic systems we arrive to

x(t+ np) = �(t+ np; 0)v = �(t; 0) [�(p; 0)]n v = �(t; 0)v = x(t); 8t 2 R

It shows that x(t) is periodic with period n p.

Supposting that there is a periodic solution x(t + np) = x(t) and repeating the same calculation

backwards we arrive that x(0) = v is an eigenvalue corresponding to an eigenvalue � such that �n = 1:

Carry out this backward argument as an exercise!
�
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Corollary 2.33, p. 59
We consider a periodic linear system x0(t) = A(t)x(t), A(t+ p) = A(t).

If
R p
0
tr(A(s)ds has a positive real part, then the equation has at least one solution x(t) that is un-

bounded, or formulating it more formally, the upper limit of it�s norm is in�nity: lim supt!1 kx(t)k =1�
Proof.
We remind that the transfer matrix �(t; �) sati�es the initial value problem:

d

dt
�(t; �) = A(t)�(t; �)

�(� ; �) = I

Arbitrary solution to the initial problem x0(t) = A(t)x(t); x(�) = � will be expressed as

x(t) = �(t; �)�

According to Abel - Liouville�s formula and considerations before

jdet(�(t; 0) )j =
����det(�(0; 0)) exp�Z t

0

tr(A(s)ds

����� =����exp�Z t

0

tr(A(s)ds

����� =

����exp�Re�Z t

0

tr(A(s)ds

������
Therefore, if Re

�R p
0
tr(A(s)ds

�
> 0 then

jdet(�(p; 0) )j =
����exp�ReZ p

0

tr(A(s)ds

����� > 1:
On the other hand det(�(p; 0)) is a product of eigenvalues �k to the monodromy matrix �(p; 0) with

multiplicities mk (it follows from the structure of similar Jordan matrix)

jdet(�(p; 0)j =
sY
k=1

j�kj
mk > 1

To have this product greater than 1 we must have at least one eigenvalue �p with
���p�� >1. There-

fore, according to one of Floquet theorems, there is a solution x(t) that is not bounded and therefore

lim supt!1 kx(t)k =1. �
For example we can choose the initial condition x(0) = vp with vp being the eigenvector to �(p; 0)

corresponding to the eigenvalue
���p�� > 1:Then the solution

x(t) = �(t; 0)vp

�(np; 0)vp = [�(p; 0)]n vp =
�
�p
�n
vp
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with
���p�� > 1. Therefore x(t) is unbounded and lim supt!1 kx(t)k =1.

We give also a geometric interpretation of this result. Consider a unite cube build on standard base

vectors e1; :::; eN at time t = 0. Consider how the volume Vol(t) of this cube changes under the action of the

linear transformation by the transfer matrix �(t; 0) of our periodic system. Point out that I = [e1; :::; eN ] :It

implies that the �gure of interest is the parallelepiped build on columns of the transfer matrix �(t; 0).One

of the main properties of periodic system is that �(np; 0) = [�(p; 0)]n. Therefore

Vol(np) = jdet([�(p; 0)]n )j = jdet([�(p; 0)] )jn =
�
exp

�
Re

�Z p

0

tr(A(s)ds

���n
If Re

�R p
0
tr(A(s)ds

�
> 0 then exp

�
Re
�R p
0
tr(A(s)ds

��
> 1. It implies that

lim
n!1

Vol(n p) =1

Therefore along the sequence of timesft = np; n = 1; 2; 3; :::g Vol(n p) is unbounded. It implies also
that

lim sup
t!1

kVol(t)k =1

The fact that limn!1Vol(n p) = 1 implies that the diameter D(n p) of the parallelepiped build on

columns of �(n p; 0) calculated at these discrete time points, is also unbounded sup limn!1D(n p) = 1:
It in turn means that there should be a solution that has the property lim supt!1 kx(t)k =1:
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