Problems on stability by the second Liapunovs method

- Show that $V(x_1, x_2) = x_1^2 + x_2^2$ is a strong Liapunov function at the origin for each of the following systems:
- (a) $\dot{x}_1 = -x_2 x_1^3$, $\dot{x}_2 = x_1 x_2^3$;
- (b) $\dot{x}_1 = -x_1^3 + x_2 \sin x_1$, $\dot{x}_2 = -x_2 x_1^2 x_2 x_1 \sin x_1$;
- (c) $\dot{x}_1 = -x_1 2x_2^2$, $\dot{x}_2 = 2x_1x_2 x_2^3$;
- (d) $\dot{x}_1 = -x_1 \sin^2 x_1$, $\dot{x}_2 = -x_2 x_2^5$;
- (e) $\dot{x}_1 = -(1-x_2)x_1$, $\dot{x}_2 = -(1-x_1)x_2$.
 - 3. Show that $V(x_1, x_2) = x_1^2 + x_2^2$ is a weak Liapunov function for the following systems at the origin:
 - (a) $\dot{x}_1 = x_2$, $\dot{x}_2 = -x_1 x_2^3 (1 x_1^2)^2$;
 - (b) $\dot{x}_1 = -x_1 + x_2^2$, $\dot{x}_2 = -x_1x_2 x_1^2$;
 - (c) $\dot{x}_1 = -x_1^3$, $\dot{x}_2 = -x_1^2x_2$;
 - (d) $\dot{x}_1 = -x_1 + 2x_1x_2^2$, $\dot{x}_2 = -x_1^2x_2^3$.

Which of these systems are asymptotically stable?

- 4. Prove that if V is a strong Liapunov function for $\dot{\mathbf{x}} = -\mathbf{X}(\mathbf{x})$, in a neighbourhood of the origin, then $\dot{x} = X(x)$ has an unstable fixed point at the origin. Use this result to show that the systems:
- (a) $\dot{x}_1 = x_1^3$, $\dot{x}_2 = x_2^3$;
- (b) $\dot{x}_1 = \sin x_1$, $\dot{x}_2 = \sin x_2$; (c) $\dot{x}_1 = -x_1^3 + 2x_1^2 \sin x_1$, $\dot{x}_2 = x_2 \sin^2 x_2$;

are unstable at the origin.

- 5. Prove that the differential equations
- (a) $\ddot{x} + \dot{x} \dot{x}^3/3 + x = 0;$ (b) $\ddot{x} + \dot{x} \sin{(\dot{x}^2)} + x = 0;$ (c) $\ddot{x} + \dot{x} + x^3 = 0;$ (d) $\ddot{x} + \dot{x}^3 + x^3 = 0,$

have asymptotically stable zero solutions $x(t) \equiv 0$.

6. Prove that $V(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ is positive definite if and only if a > 0 and $ac > b^2$. Hence or otherwise prove that

$$\dot{x}_1 = x_2, \qquad \dot{x}_2 = -x_1 - x_2 + (x_1 + 2x_2)(x_2^2 - 1)$$

is asymptotically stable at the origin by considering the region $|x_2| < 1$. Find a domain of stability.

- 7. Find domains of stability for the following systems by using the appropriate Liapunov function:
- (a) $\dot{x}_1 = x_2 x_1 (1 x_1^2 x_2^2) (x_1^2 + x_2^2 + 1)$ $\dot{x}_2 = -x_1 - x_2 (1 - x_1^2 - x_2^2) (x_1^2 + x_2^2 + 1);$
- (b) $\dot{x}_1 = x_2$, $\dot{x}_2 = -x_2 + x_2^3 x_1^5$.
- 8. Use $V(x_1, x_2) = (x_1/a)^2 + (x_2/b)^2$ to show that the system $\dot{x}_1 = x_1 (x_1 a), \quad \dot{x}_2 = x_2 (x_2 b), \quad a, b > 0,$

has an asymptotically stable origin. Show that all trajectories tend to the origin as $t \to \infty$ in the region

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} < 1.$$

9. Given the system

$$\dot{x}_1 = x_2, \qquad \dot{x}_2 = x_2 - x_1^3$$

show that a positive definite function of the form

$$V(x_1, x_2) = ax_1^4 + bx_1^2 + cx_1x_2 + dx_2^2$$

can be chosen such that $\dot{V}(x_1, x_2)$ is also positive definite. Hence deduce that the origin is unstable.

10. Show that the origin of the system

$$\dot{x}_1 = x_2^2 - x_1^2, \qquad \dot{x}_2 = 2x_1 x_2$$

is unstable by using

$$V(x_1, x_2) = 3x_1x_2^2 - x_1^3$$

Solutions.

- 1. (d) $\dot{V}(x_1, x_2) = -2x_1^2(\sin x_1)^2 2x_2^2 2x_2^6$ is negative definite when $x_1^2 + x_2^2 < \pi^2$.
 - (e) $\dot{V}(x_1, x_2) = -2x_1^2(1 x_2) 2x_2^2(1 x_1)$ is negative definite when $x_1^2 + x_2^2 < 1$.
- 2. The domain of stability is \mathbb{R}^2 for (a), (b) and (c) and $\{(x_1, x_2) | x_1^2 + x_2^2 < r^2\}$ where $r = \pi$ for (d) and r = 1 for (e).
- 3. Asymptotically stable: (a) and (b). Neutrally stable: (c) and (d).
- 4. The system $\dot{\mathbf{x}} = -\mathbf{X}(\mathbf{x})$ has an asymptotically stable fixed point at the origin. Let \mathbf{x}_0 be such that $\lim_{t \to \infty} \phi_t(\mathbf{x}_0) = \mathbf{0}$. Choose a neighbourhood N of $\mathbf{0}$ not containing \mathbf{x}_0 . The trajectory through \mathbf{x}_0 of the system $\dot{\mathbf{x}} = \mathbf{X}(\mathbf{x})$ satisfies $\lim_{t \to -\infty} \phi_t(\mathbf{x}_0) = \mathbf{0}$. Use this property to show that the origin is unstable. Use the function $V(x_1, x_2) = x_1^2 + x_2^2$ in (a) to (c).
- 5. Use the function $V(x_1, x_2) = x_1^2 + x_2^2$ in (a) and (b) and $V(x_1, x_2) = x_1^4 + 2x_2^2$ in (c) and (d).
- 6. If V is positive definite then V(1,0) is positive and so a is positive; also

$$V(x_1, x_2) = a\left(x_1 + \frac{b}{a}x_2\right)^2 + \left(c - \frac{b^2}{a}\right)x_2^2$$

and thus a and $c - b^2/a$ are positive. Try a = 5, b = 1, c = 2; then

$$V(x_1, x_2) = 5\left(x_1 + \frac{x_2}{5}\right)^2 + \frac{9}{5}x_2^2.$$

For $V(x_1, x_2) < 9/5, x_2^2 < 1$ and so there is a domain of stability defined by $25x_1^2 + 10x_1x_2 + 10x_2^2 < 9$.

- 7. (a) $V(x_1, x_2) = x_1^2 + x_2^2$, $\dot{V}(x_1, x_2) = -2r^2(1 r^2)(1 + r^2)$; $x_1^2 + x_2^2 < 1$.
 - (b) $V(x_1, x_2) = x_1^6 + 3x_2^2$, $\dot{V} = -x_2^2(1 x_2^2)$; $x_1^6 + 3x_2^2 < 3$.

8.
$$\dot{V}(x_1, x_2) = \frac{2x_1^2}{a^2}(x_1 - a) + \frac{2x_2^2}{b^2}(x_2 - b)$$
 is negative definite for $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} < 1$.

9. $V(x_1, x_2) = \frac{1}{2}x_1^4 + \frac{1}{2}x_1^2 - x_1x_2 + x_2^2$ satisfies the hypotheses of Theorem 5.4.3.

10.
$$\dot{V}(x_1, x_2) = 3(x_1^2 + x_2^2)^2$$
.