1. Show that $V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ is a strong Liapunov function at the origin for each of the following systems:
(a) $\quad \dot{x}_{1}=-x_{2}-x_{1}^{3}, \quad \dot{x}_{2}=x_{1}-x_{2}^{3}$;
(b) $\quad \dot{x}_{1}=-x_{1}^{3}+x_{2} \sin x_{1}, \quad \dot{x}_{2}=-x_{2}-x_{1}^{2} x_{2}-x_{1} \sin x_{1}$;
(c) $\dot{x}_{1}=-x_{1}-2 x_{2}^{2}, \quad \dot{x}_{2}=2 x_{1} x_{2}-x_{2}^{3}$;
(d) $\dot{x}_{1}=-x_{1} \sin ^{2} x_{1}, \quad \dot{x}_{2}=-x_{2}-x_{2}^{s}$;
(e) $\quad \dot{x}_{1}=-\left(1-x_{2}\right) x_{1}, \quad \dot{x}_{2}=-\left(1-x_{1}\right) x_{2}$.
2. Show that $V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ is a weak Liapunov function for the following systems at the origin:
(a) $\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}-x_{2}^{3}\left(1-x_{1}^{2}\right)^{2}$;
(b) $\quad \dot{x}_{1}=-x_{1}+x_{2}^{2}, \quad \dot{x}_{2}=-x_{1} x_{2}-x_{1}^{2}$;
(c) $\quad \dot{x}_{1}=-x_{1}^{3}, \quad \dot{x}_{2}=-x_{1}^{2} x_{2}$;
(d) $\quad \dot{x}_{1}=-x_{1}+2 x_{1} x_{2}^{2}, \quad \dot{x}_{2}=-x_{1}^{2} x_{2}^{3}$.

Which of these systems are asymptotically stable?
4. Prove that if V is a strong Liapunov function for $\dot{\mathbf{x}}=-\mathbf{X}(\mathbf{x})$, in a neighbourhood of the origin, then $\dot{\mathbf{x}}=\mathbf{X}(\mathbf{x})$ has an unstable fixed point at the origin. Use this result to show that the systems:
(a) $\dot{x}_{1}=x_{1}^{3}, \quad \dot{x}_{2}=x_{2}^{3}$;
(b) $\quad \dot{x}_{1}=\sin x_{1}, \quad \dot{x}_{2}=\sin x_{2}$;
(c) $\quad \dot{x}_{1}=-x_{1}^{3}+2 x_{1}^{2} \sin x_{1}, \quad \dot{x}_{2}=x_{2} \sin ^{2} x_{2}$;
are unstable at the origin.
5. Prove that the differential equations
(a) $\ddot{x}+\dot{x}-\dot{x}^{3} / 3+x=0$;
(b) $\ddot{x}+\dot{x} \sin \left(\dot{x}^{2}\right)+x=0$;
(c) $\ddot{x}+\dot{x}+x^{3}=0$;
(d) $\ddot{x}+\dot{x}^{3}+x^{3}=0$,
have asymptotically stable zero solutions $x(t) \equiv 0$.
6. Prove that $V\left(x_{1}, x_{2}\right)=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$ is positive definite if and only if $a>0$ and $a c>b^{2}$. Hence or otherwise prove that

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}-x_{2} f\left(x_{1}+2 x_{2}\right)\left(x_{2}^{2}-1\right)
$$

is asymptotically stable at the origin by considering the region $\left|x_{2}\right|<1$. Find a domain of stability.
7. Find domains of stability for the following systems by using the appropriate Liapunov function:
(a) $\dot{x}_{1}=x_{2}-x_{1}\left(1-x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}+1\right)$

$$
\dot{x}_{2}=-x_{1}-x_{2}\left(1-x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}+1\right) ;
$$

(b) $\quad \dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{2}+x_{2}^{3}-x_{1}^{5}$.
8. Use $V\left(x_{1}, x_{2}\right)=\left(x_{1} / a\right)^{2}+\left(x_{2} / b\right)^{2}$ to show that the system

$$
\dot{x}_{1}=x_{1}\left(x_{1}-a\right), \quad \dot{x}_{2}=x_{2}\left(x_{2}-b\right), \quad a, b>0,
$$

has an asymptotically stable origin. Show that all trajectories tend to the origin as $t \rightarrow \infty$ in the region

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}<1 .
$$

9. Given the system

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=x_{2}-x_{1}^{3}
$$

show that a positive definite function of the form

$$
V\left(x_{1}, x_{2}\right)=a x_{1}^{4}+b x_{1}^{2}+c x_{1} x_{2}+d x_{2}^{2}
$$

can be chosen such that $\dot{V}\left(x_{1}, x_{2}\right)$ is also positive definite. Hence deduce that the origin is unstable.
10. Show that the origin of the system

$$
\dot{x}_{1}=x_{2}^{2}-x_{1}^{2}, \quad \dot{x}_{2}=2 x_{1} x_{2}
$$

is unstable by using

$$
V\left(x_{1}, x_{2}\right)=3 x_{1} x_{2}^{2}-x_{1}^{3} .
$$

Solutions.

1. (d) $\dot{V}\left(x_{1}, x_{2}\right)=-2 x_{1}^{2}\left(\sin x_{1}\right)^{2}-2 x_{2}^{2}-2 x_{2}^{6}$ is negative definite when $x_{1}^{2}+x_{2}^{2}<\pi^{2}$.
(e) $\dot{V}\left(x_{1}, x_{2}\right)=-2 x_{1}^{2}\left(1-x_{2}\right)-2 x_{2}^{2}\left(1-x_{1}\right)$ is negative definite when $x_{1}^{2}+x_{2}^{2}<1$.
2. The domain of stability is R^{2} for (a), (b) and (c) and $\left\{\left(x_{1}, x_{2}\right)\right.$ $\left.\mid x_{1}^{2}+x_{2}^{2}<r^{2}\right\}$ where $r=\pi$ for (d) and $r=1$ for (e).
3. Asymptotically stable: (a) and (b). Neutrally stable: (c) and (d).
4. The system $\dot{\mathbf{x}}=-\mathbf{X}(\mathbf{x})$ has an asymptotically stable fixed point at the origin. Let \mathbf{x}_{0} be such that $\lim _{t \rightarrow \infty} \phi_{t}\left(\mathbf{x}_{0}\right)=\mathbf{0}$. Choose a neighbourhood N of $\mathbf{0}$ not containing \mathbf{x}_{0}. The trajectory through \mathbf{x}_{0} of the system $\dot{\mathbf{x}}=\mathbf{X}(\mathbf{x})$ satisfies $\lim _{t \rightarrow-\infty} \phi_{t}\left(\mathbf{x}_{0}\right)=\mathbf{0}$. Use this property to show that the origin is unstable. Use the function $V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ in (a) to (c).
5. Use the function $V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ in (a) and (b) and $V\left(x_{1}, x_{2}\right)=x_{1}^{4}+2 x_{2}^{2}$ in (c) and (d).
6. If V is positive definite then $V(1,0)$ is positive and so a is positive; also

$$
V\left(x_{1}, x_{2}\right)=a\left(x_{1}+\frac{b}{a} x_{2}\right)^{2}+\left(c-\frac{b^{2}}{a}\right) x_{2}^{2}
$$

and thus a and $c-b^{2} / a$ are positive. Try $a=5, b=1, c=2$; then

$$
V\left(x_{1}, x_{2}\right)=5\left(x_{1}+\frac{x_{2}}{5}\right)^{2}+\frac{9}{5} x_{2}^{2}
$$

For $V\left(x_{1}, x_{2}\right)<9 / 5, x_{2}^{2}<1$ and so there is a domain of stability defined by $25 x_{1}^{2}+10 x_{1} x_{2}+10 x_{2}^{2}<9$.
7. (a) $V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}, \dot{V}\left(x_{1}, x_{2}\right)=-2 r^{2}\left(1-r^{2}\right)\left(1+r^{2}\right) ; x_{1}^{2}$ $+x_{2}^{2}<1$.
(b) $V\left(x_{1}, x_{2}\right)=x_{1}^{6}+3 x_{2}^{2}, \dot{V}=-x_{2}^{2}\left(1-x_{2}^{2}\right) ; \quad x_{1}^{6}+3 x_{2}^{2}<3$.
8. $\dot{V}\left(x_{1}, x_{2}\right)=\frac{2 x_{1}^{2}}{a^{2}}\left(x_{1}-a\right)+\frac{2 x_{2}^{2}}{b^{2}}\left(x_{2}-b\right)$ is negative definite for $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}<1$.
9. $V\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{4}+\frac{1}{2} x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}$ satisfies the hypotheses of Theorem 5.4.3.
10. $\dot{V}\left(x_{1}, x_{2}\right)=3\left(x_{1}^{2}+x_{2}^{2}\right)^{2}$.

