MVE165, Applied Optimization Lecture 1

Ann-Brith Strömberg

2008-04-01

Course contents

- Applications of optimization
- Mathematical modelling
- Solution techniques
- Solvers

Model types

- Linear optimization
- Linear network models
- Integer linear optimization
- Unconstrained and constrained non-linear optimization
- Optimization under uncertainty
- Constraint programming

Organization

- Lectures mathematical optimization modelling and theory
- Exercises use solvers, oral examination
- Guest lectures applications of optimization
- Assignments modelling, use solvers, written reports, opposition, & oral presentations

Staff

- Ann-Brith Strömberg, course leader and lecturer
- Birgit Grohe, lecturer
- Michael Patriksson, examiner
- Fredrik Hedénus (Physical Resource Theory), guest lecturer
- Mats Viberg (Signals and Systems), guest lecturer
- Caroline Olsson (Radiation Physics), guest lecturer

Course homepage

http://www.math.chalmers.se/Math/Grundutb/CTH/mve165/0708/

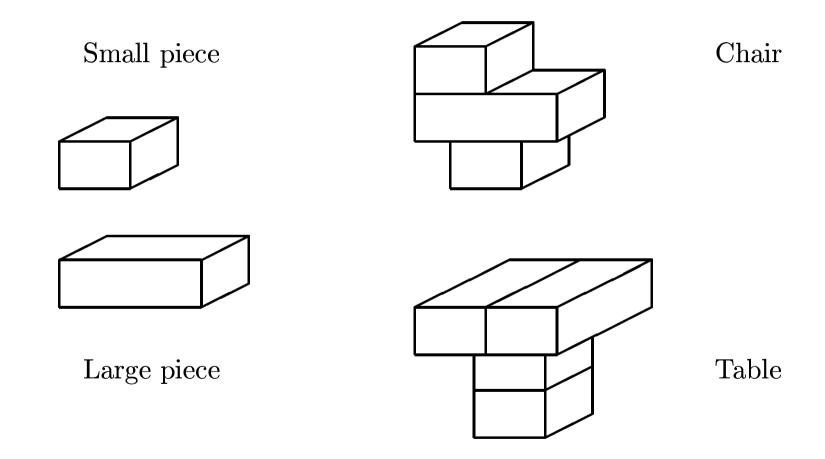
- Contains details, information on assignments and exercises, deadlines, lecture notes, etc
- Will be updated **every** week during the course
- The course information (ps & pdf) was updated 080331 !!

Optimization

"Do something as good as possible"

- Something: Which are the decision alternatives?
- Possible: What restrictions are there?
- Good: What is a relevant optimization criterion?

A manufacturing example: Produce tables and chairs from "small" and "large" pieces



A manufacturing example, continued

- A chair is assembled from one large and two small pieces
- A table is assembled from two pieces of each
- Only 6 large and 8 small pieces are available
- A table/chair is sold for 1600:-/1000:-
- Assume that all items produced can be sold and determine an optimal production plan.

A mathematical optimization model

Something: Which are the decision alternatives? \Rightarrow Variables

- x_1 = number of tables produced and sold
- x_2 = number of chairs produced and sold

Possible: What restrictions are there? \Rightarrow Constraints

$2x_1$	+	x_2	\leq	6	(6 large pieces)
$2x_1$	+	$2x_2$	\leq	8	(8 small pieces)

 $x_1, x_2 \ge 0$ (physical restrictions)

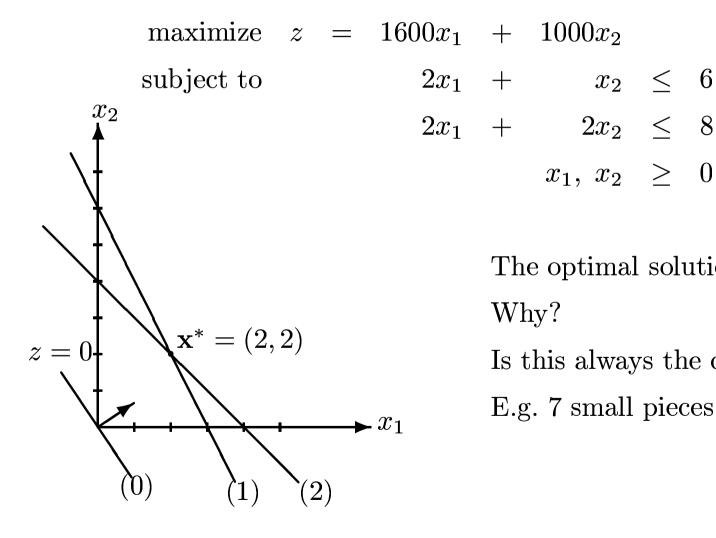
Good: What is a relevant optimization criterion? \Rightarrow Objective function

maximize $z = 1600x_1 + 1000x_2$ (z = total revenue)

Solve the model using LEGO!

- Start at no production: $x_1 = x_2 = 0$. Use the "best marginal profit" to choose the item to produce.
 - x_1 has the highest marginal profit (1600:-/table) \Rightarrow produce as many tables as possible.
 - At $x_1 = 3$, there are no more large pieces left.
- The marginal value of x_2 is now 200:- since taking apart one table (-1600:-) yields two chairs (+2000:-) \Rightarrow 400:-/2 chairs.
 - Increase x_2 maximally \Rightarrow decrease x_1 .
 - At $x_1 = x_2 = 2$ there are no more small pieces.
- The marginal value of x₁ is negative (to build one more table one has to take apart two chairs ⇒ -400:-). The marginal value of x₂ is -600:- (to build one more chair one table must be taken apart). Hence x₁ = x₂ = 2 is an optimal solution.

Geometrical representation of the model



The optimal solution happens to be integral Why?

Is this always the case?

 $x_1, x_2 \geq 0$

E.g. 7 small pieces ...

 $2x_1 + 2x_2 \leq 8$

Operations research—more than just mathematics



Modeling—a production-inventory example

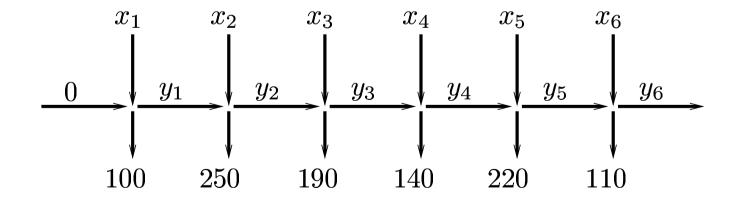
- Deliver windows over a six-month period
- Demand for each month: 100, 250, 190, 140, 220, and 110 units
- Production cost/window: $\in 50, \in 45, \in 55, \in 48, \in 52$, and $\in 50$
- Storing a produced window from one month to the next costs $\in 8$
- Meet the demands and minimize costs
- Find an optimal production schedule

Define the decision variables

 x_i = number of units produced in month $i = 1, \ldots, 6$

 y_i = units left in the inventory at the end of month $i = 1, \ldots, 6$

The "flow" of windows over time can be illustrated as:



Define the limitations/constraints

• For each month:

initial inventory + production - ending inventory = demand

0	+	x_1	—	y_1	=	100,	
y_1	+	x_2	—	y_2	=	250,	
y_2	+	x_3	_	y_3	=	190,	
y_3	+	x_4	_	y_4	=	140,	
y_4	+	x_5	_	y_5	=	220,	
y_5	+	x_6	_	y_6	=	110,	
		x_i	,	y_i	\geq	0,	$i=1,\ldots,6$

Objective function: minimize the costs

• Production cost (\in):

50 x_1 + 45 x_2 + 55 x_3 + 48 x_4 + 52 x_5 + 50 x_6

• Inventory cost (\in) :

$$8 (y_1 + y_2 + y_3 + y_4 + y_5 + y_6)$$

 \Rightarrow Objective function (\in):

minimize
$$50x_1 + 45x_2 + 55x_3 + 48x_4 + 52x_5 + 50x_6$$

+8 $(y_1 + y_2 + y_3 + y_4 + y_5 + y_6)$

A complete and general optimization model

minimize
$$\sum_{i=1}^{6} c_i x_i + \sum_{i=1}^{6} k y_i,$$

subject to $y_{i-1} + x_i - y_i = d_i, \quad i = 1, \dots, 6,$
 $y_0 = 0,$
 $x_i, y_i \ge 0, \quad i = 1, \dots, 6,$

where the demands are given by the vector

$$d = (d_i)_{i=1}^6 = (100, 250, 190, 140, 220, 110),$$

the production costs per item are given by the vector

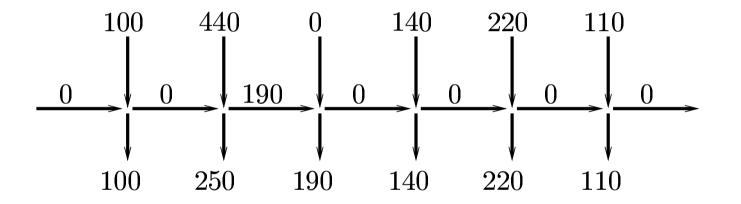
$$c = (c_i)_{i=1}^6 = \in (50, 45, 55, 48, 52, 50),$$

and the inventory cost each month is given by $k = \in 8$ per item.

An optimal solution—optimal production schedule

$$x = (x_i)_{i=1}^6 = (100, 440, 0, 140, 220, 110)$$

$$y = (y_i)_{i=0}^6 = (0, 0, 190, 0, 0, 0, 0)$$



- The minimal total cost is $\in 49980$
- Homework: What would be the solution if the production capacity was 220 items per month? If the inventory cost was reduced to €2/month and item?

Maximize the profit from a family dairy $^{\rm a}$

- Three cows produce together 851 of milk each week
- Turn the milk into ice cream and butter, sell on Saturday market
- 1kg of butter requires 8l of milk (+salt—simplification)
- 11 of ice cream requires 31 of milk (+egg, sugar, vanilla—simplif.)
- The freezer can hold at most 23l of ice cream
- The available hours of work per week is 6
- 1h work needed to produce either 15l ice cream or 1kg butter
- Any fraction of work time yields the corresponding fraction of product (simplification)
- The products have good reputation—everything is sold (simplif.)
- Prices ensure a profit of $\in 2/l$ of ice cream and $\in 3/kg$ of butter
- How much should be produced of each product to maximize the total profit?

^aAdapted from Ferris et al.: "Linear programming with MATLAB" (2007)

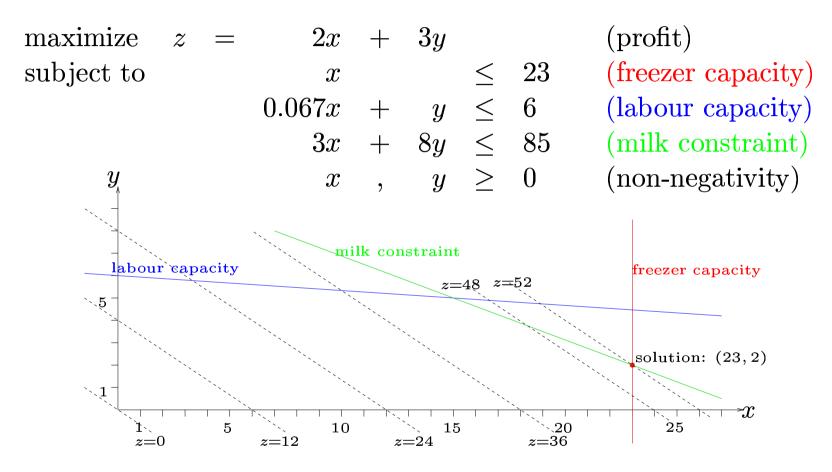
Family dairy: Modeling

- Identify decision variables: Which quantities can be varied?
- \Rightarrow Amount of ice cream (liters) and butter (kilograms) to produce:

x = number of liters of ice cream per week y = number of kilograms of butter per week

- \Rightarrow Objective function, resulting total profit (\in): z = 2x + 3y
 - Formulate constraints to prevent from infeasible solutions:
 - Freezer capacity (liters): $x \le 23$
 - Work time (hours): $\frac{1}{15}x + y \le 6$
 - Milk needed for production (liters of milk): $3x + 8y \le 85$
 - No negative production: $x \ge 0, y \ge 0$

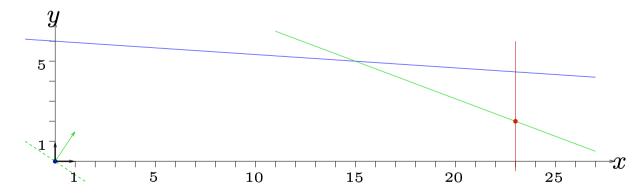
Family dairy: Linear program & graphical solution



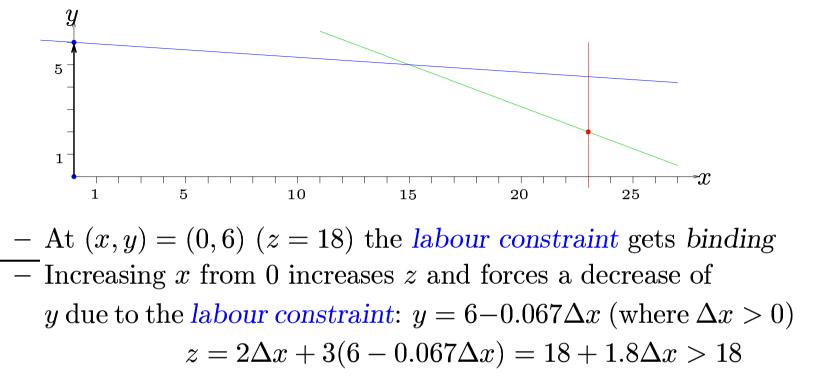
Maximal profit: z = €52 at the extreme point (x, y) = (23, 2)
Optimal solution: 23l ice cream and 2kg butter per week

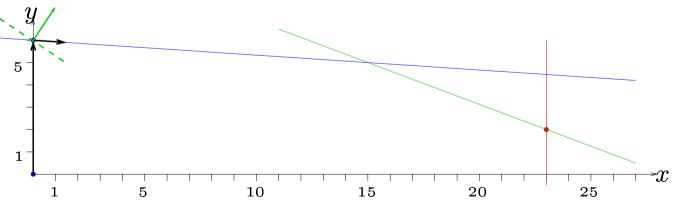
Solution method in graphical terms

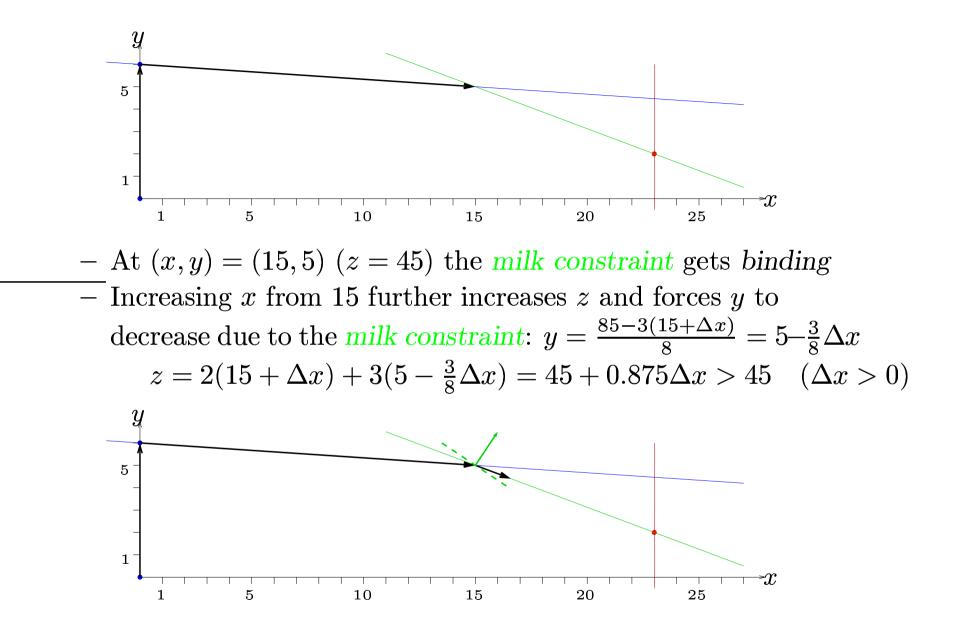
- Objective function and constraints are *linear*
- \Rightarrow An optimal solution can always be found at an extreme point to the feasible set. Why?
 - The *simplex method*: search for an optimal solution among the extreme points to the feasible set—in a structured way
 - Start at the extreme point (x, y) = (0, 0) where z = 0

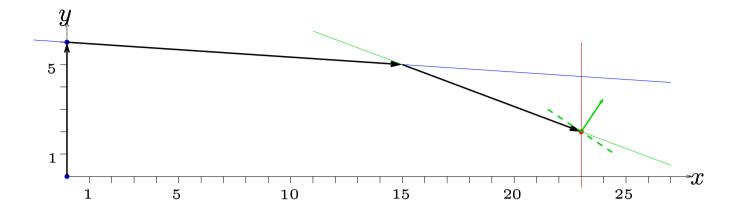


- Increasing y yields z = 3y; increasing x yields z = 2x \Rightarrow Increase y to get the fastest increase in z









- At (x, y) = (23, 2) (z = 52) the freezer constraint gets binding - x cannot be increased from 23
- Decreasing y yields $z=2\cdot 23+3\cdot (2-\Delta y)=52-3\Delta y<52$
- Decreasing x yields $z = 2 \cdot (23 \Delta x) + 3 \cdot 2 = 52 2\Delta x < 52$
- No further improvements can be made, no extreme point can be better
- The optimal solution is given by x = 23 and y = 2 with optimal value z = 52
- The freezer and milk constraints are binding at the optimal point

The simplex method for linear programs

- An optimal solution can always be found at an extreme point of the feasible set
- Several extreme points can be optimal. Why? When?
- Utilizes linear algebra and the constraint inequalities/equations to detect extreme point solutions
- The objective function "guides" a path through the extreme points with increasing/decreasing values (max/min)
- Stops when no further improvements can be made
- Solves general linear programs with n variables and m constraints
- The number of extreme points is $\leq \frac{n!}{m!(n-m)!}$
- Typically, the number of extreme points visited by the simplex method is $\leq 3m$

Linear programming solvers

- MATLAB optimization toolbox
- CPLEX (commercial software, free student versions, interface to AMPL and MATLAB)
- GLPK (free software, interface to MATLAB)
- Clp (interface to MATLAB)
- Excel Solver (in the Taha book but not in this course)
- TORA (in the Taha book but not in this course)

Modelling software

• AMPL (A Mathematical Programming Language)

Recommended $exercises^a$

- Problem set 2.1A 1–4
- Problem set 2.2A 1–18
- Problem set 2.2B 1–7
- Problem set 2.3A 3
- Problem set 2.3D 2, 4, 6
- Problem set 2.3E 1–5
- Problem set 2.3F 1–6
- \bullet Problem set 2.3G 1–2, 12

^aDo at least one or two exercises from each problem set