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Solution methods for unconstrained optimization
e General iterative search method:

1. Choose a starting solution, x° € ®”. Let k =0

2. Determine a seach direction d*

3. Determine a step length, ¢, by solving:

min p(t) = F* +t-db)

4. New iteration point, x*+1 = x* 4 ¢; - d*
5. If a termination criterion is fulfilled = Stop!

Oterwise: let k := k + 1 and return to step 2

e How choosing the search direction d*, the step length ¢, and the

termination criterion?

Search direction

Goal: f(xF1) < f(x*)

How does f change locally in a direction d* at x*?

Taylor expansion: f(x* + td*) = f(x*) + tVf(x*)Td* + O(1?)

e For sufficiently small ¢ > 0:
f(xF +1d*) < f(x*) = VF(xF)Td* <0
= Definition:

If Vf(x¥)Td* < 0 then d* is a descent direction for f at x*
If Vf(x*)Td* > 0 then d* is an ascent direction for f at x*

e We wish to minimize (maximize) f over R™:

= Choose d* as a descent (an ascent) direction from x*

Figur 1: At x*, the descent direction d* is generated. A step ¢ is
taken in this direction, producing x**1. At this point, a new descent

direction d**?! is generated, and so on.




Step length—Iline search (minimization)

e Solve ming>g ¢(t) := f(x* + ¢ - d*) where d* is a descent

direction from x*

e A minimization problem in one variable
= Solution ¢
e Analytic solution: ¢'(t;) =0

e Solution methods: direct search, golden section method (reduce
the interval of uncertainty, Chapter 19.1.1), Armijo

e In practice: Do not solve exactly, but to sufficient improvement of
the function value: f(x* + ¢,d*) < f(x*) — € for some € > 0

Line search

©(t)

Figur 2: A line search in a descent direction.
t), solves ming>q @(t) := f(x* +¢ - d¥)
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Line search—the Armijo step length rule
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©(0) + ¢ - ¢'(0) ©(0) + 1 - pne'(0)

Figur 3: The interval R(u) accepted by the Armijo step length rule.
0 < p < 1, the fraction of decrease required.
R(p) ={t=0]p(t) <(0)+¢t-pne'(0) } Note that ¢'(0) <0

Termination criteria

e Needed since V f(x*) = 0 will never be exactly fulfilled

e Typical choices, where ¢; >0,j=1,...,4
(a) [IVS(xF)I < e
(b) [F(x*+1) = f(x*)] <e2
(c) [[x*+t —x*|| < es

(d) tp < eq

e Often used in combination

e The search method only guarantees a stationary solution, whose

character is determined by the properties of f (convexity, ..

)
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Common special cases of search methods Common special cases of search methods
e Steepest ascent (descent) e Newton’s method: Make use of second derivative information
Let the search direction be (minus) the gradient: (curvature). Requires that f is twice continuously differentiable.
k k-1 k : .
d* = +/-Vf(x*) (max,/min) d" = —H;(x")" " Vf(x") (independent of max/min)
PRros: PRros:
- F
— Requires only gradient information = Robust aster convergence
Cons:
— Not so computationally demanding per iteration . ) ) ) o )
— Requires more computations per iteration (matrix inversions)
cons: — Does not always work (if det(H(x*)) = 0)
— (Very) Slow convergence towards a stationary point
o L ) ] - PRACTICAL ADJUSTMENTS:
— E'Iach dl.I"ECtIOIl d .1s perpendicular to the ‘preV1ous one d ' _ Start using steepest ascent, then change to Newton
(if the line search is solved exactly)—the iterate sequence is % X X X a1 X
sig-zagging — Use d” = —Q*V f(x”), where Q° =~ Hy(x")™" and Q
positive (negative) definite
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— Efficient updates of the inverse should be used

— Let Q% = (Hf(x":)+/7E’°)71 such that Q* becomes
positive/negative definite, e.g., E¥ = yI (which shifts all the
eigenvalues by +/—)
Note: for large values of -y, this makes d* resemble the
steepest descent direction

— Solve examples from Problem set 19.1B using steeepest
descent and Newtons method and compare the courses of
solution

Motivation for the ascent (descent) property of
Newtons method

e Taylor expansion of f around x:
ox(d) == f(x) + Vf(x)Td + 3dTV?f(x)d

e We wish to find a direction d € R” such that (steplength ¢ = 1)
Vapx(d) = Vf(x) + V2f(x)d = Vf(x) + Hy(x)d = 0"

(a stationary point for px) = d = —Hj(x) 1V f(x)

e If f is convex (concave) around the starting point x (i.e., Hy(x)
positive (negative) definite), then Newtons method converges
towards a local minimum (maximum)

e If f is quadratic (i.e., f(x) = a + cTx + $xTQx), then Newtons
method finds a stationary point in one iteration (without step
length computation). Verify this!
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Optimality for optimization over convex sets ¢ Definition FEASIBLE DIRECTIONS FOR LINEAR CONSTRAINTS
minimize f(x) subject to x € § Suppose that g;(x) = afx —b;, i =1,...,m. Then, the set of
feasible directions at x is {d € R"|ald < 0,i € Z(x) }
where S = {x € R" |g;(x) <0,i=1,...,m } is a convex set e Necessary optimality conditions
e Definition FEASIBLE DIRECTION If x* € S is a local minimum of f over S then Vf(x*)Td >0
If x € S, then d € R" is a feasible direction from x if a small step h'olds for all feasible directiolns d at x* S
in this direction does not lead outside the set S (i.e., at x* there are no feasible descent directions)
Formally: d defines a feasible direction at x € S if y Necessary. and sufficient optimality conditions
Suppose S is non-empty and convex and f convex. Then,
35 > 0 such that x =+ tde Sforallte [0, 5] x* is a global minimum of f over S
... & Vf(x*)T(x —x*) >0 holds for all x € S
¢ Definition ACTIVE CONSTRAINTS
The active constraints at x € .S are those that are fulfilled with ~Vf(x*) . ~Vf(x¥)
equality, i.e., Z(x) = {i=1,...,m|gi(x) =0} x* X
e DraAw!!
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The Karush-Kuhn-Tucker conditions

Necessary conditions for optimality

Assume that the functions g; : R® — R, i = 1,...,m, are convex and
differentiable and that there exists a point X € S such that ¢;(X) < 0,
i=1,...,m. Further, assume that f : R” — R is differentiable. If

x* € S is a local minimum of f over S, then there exists a vector

p € R™ such that

Vix*)+ Z uiVgi(x*) = 0"
i=1
.u‘lgz(X*) = 07 1= ]-a , M
gi(x") < 0, i=1,....,m
po> 0"

Figur 4: Geometric interpretation of the Karush-Kuhn-Tucker condi-
tions. At a local minimum, minus the gradient of the objective can be
expressed as a non-negative linear combination of the gradients of the
active constraints at this point.
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The Karush-Kuhn-Tucker conditions The optimality conditions can be used to
Sufficient conditions under convexity o verify an (local) optimal solution
Assume that the functions f,g; : R® — R, i =1,...,m, are convex e .
) . . e sensitivity analysis
and differentiable. If the conditions
m e solve certain special cases of nonlinear programs (e.g. quadratic)
* . . * — n
V) + Z; HiVgi(x) 0 e derive properties of a solution to a non-linear program
1=
pigi(x*) = 0, 1=1,...,m e algorithm construction
po> 0"
hold, then x* € S is a global minimum of f over
S={xeR" |gkx) <0,i=1,...,m}.
The Karush-Kuhn-Tucker conditions can also be stated for
optimization problems with equality constraints
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Example
minimize  f(x) := 222 + 2z172 + 22 — 1021 — 1022
subject to  z2+22 < 5
3r1+x2 < 6
o Is x° = (1,2)T a Karush-Kuhn-Tucker point?

e An optimal solution?

o Vf(x)= (4z1 + 222 — 10,221 + 2x2 — 10)T, Vg1 (x) = (221,272)7,
Voa(x) = (3,1)"

429 + 229 — 10 + 2291 + 32 = 0 2p1 + Bpg = 2

N 2x9+2x3—10+23¢8u1+u2:0 N dpr 4+ pe =4
p1((2D)? + (29)* — 5) = p2(3z + 23 —6) =0 Opu1 =—p2 =0

w1, p2 >0 p1, p2 > 0

:>[,L2:0 = /11:120

Example, continued
e The Karush-Kuhn-Tucker conditions hold.

e Optimal? Check convexity!

4 2 2 0
o V2f(x) = , V2gi(x) = , V2ga(x) = 02%2
2 2 0 2

= f, g1, and gy are convex = x° = (1,2)T is an optimal solution
Flx) = 20




