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Sampling

EX analog signal x(t) sampled with period T = 5 s:
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Digital signal x(n), n = . . . ,−1, 0, 1, 2, . . . , represents x(t) for
t = . . . ,−T, 0, T, 2T, . . . .

T sampling time [s], fsamp = 1/T sampling frequency [Hz].
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Digital Filters

Analog filter = continuous-time LTI-system: differential equation

Digital filter = discrete-time LTI-system: difference equation

Digital Filter
x(n) y(n)

First-order filter:

y(n) = −a1y(n − 1) + b0x(n) + b1x(n − 1)

Implemented in a computer, DSP, FPGA or digital ASIC
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Time-Domain Characterization

First-order difference equation:

y(n) + a1y(n − 1) = b0x(n) + b1x(n − 1)

Impulse response h(n) = filter output when x(n) = δ(n). I/O relation:

y(n) =
∞∑

k=−∞
h(k)x(n − k)

• Causal filter if h(n) = 0, n < 0.

• Finite Impulse Response (FIR) if h(n) = 0, n > M (a1 = 0)

• Infinite Impulse Response (IIR) otherwise
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Discrete-Time Fourier
Transform

Frequency content of digital signals? Need ≥ 2 samples per period ⇒ can

only represent frequencies ≤ fsamp/2 = Nyquist frequency.

DTFT (Discrete-Time Fourier Transform):

X(ejωT ) =
∞∑

n=−∞
x(n)e−jωTn , ω = 2πf [rad/s]

Equal to continuous-time FT if x(t) contains no frequencies above Nyquist.

Then: x(t) can be perfectly reconstructed from samples x(n)!

If x(t) has frequency content above fsamp/2 ⇒ aliasing (folding

distortion).
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Frequency Response

Frequency domain: DTFT{x(n − k)} = e−jωTkX(ejω) ⇒

Y (ejωT ) + a1e
−jωT Y (ejωT ) = b0X(ejωT ) + b1e

−jωT X(ejωT )

which implies

Y (ejωT ) =
b0 + b1e

−jωT

1 + a1e−jωT
X(ejωT ) = H(ejωT )X(ejωT )

H(ejωT ) = Y (ejωT )/X(ejωT ) = H(ejΩ) is the frequency response of the

filter!

Note: H(ejΩ) is the DTFT of the impulse response h(n)!

ω frequency in rad/s, Ω = ωT normalized frequency in rad/sample.
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Stability

A critical feature of a filter: stability!

A filter is BIBO-stable (Bounded Input Bounded Output) if |x(n)| < Cx

implies |y(n)| < Cy . A filter is BIBO-stable if

∞∑
k=−∞

|h(k)| < ∞

The transfer function of a general (finite-dimensional) system is

H(z) =
b0 + b1z

−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N
=

B(z)
A(z)

so H(ejΩ) = H(z)|z=ejΩ . The poles, pi, i = 1, . . . , N of an N th order

system are the zeros of A(z), and the system is BIBO-stable if |pi| < 1 ∀i.
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Frequency Response, cont’d

Filter response to a single frequency:

x(n) = sin(Ωn)

Stationary output (assuming stable filter):

y(n) = |H(ejΩ)| sin(Ωn + Arg{H(ejΩ)})

The frequency response can obviously be interpreted as a complex
frequency-dependent gain!

• Amplitude characteristics: |H(ejΩ)|
• Phase characteristics: Arg{H(ejΩ)}

Choice of filter coefficients determines which frequencies to pass and which
ones to block.
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Digital Filters, cont’d

The spectrum |X(ejΩ)|2 is the energy of x(n) per Hz.

The spectrum of y(n) is related to that of x(n) by

|Y (ejΩ)|2 = |H(ejΩ)|2 |X(ejΩ)|2

The filter changes the frequency content of a signal - we can suppress noise

and interference!

Filter design = choice of coefficients {ak}N
k=1 and {bk}M

k=1 so that

|H(ejΩ)| (and Arg{H(ejω)}) meets specifications.

Filter design tools in Matlab: sptool, fdatool (graphic), fir1, firls, firpm,

butter, cheby1, cheby2, etc.
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Digital Filters, cont’d

EX LP-filter y(n) = 0.4y(n − 1) + 0.6x(n)
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Digital Filters, cont’d

EX HP-filter y(n) = −0.4y(n − 1) + 0.6x(n − 1)
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Digital Filters, summary

• Sampling x(n) ∼ x(t) , t = nT

• DTFT X(ejωT ) =
∑∞

n=−∞ x(n)e−jωTn

• Digital filter (1st order): y(n) + a1y(n − 1) = b0x(n) + b1x(n − 1)

• Frequency domain: Y (ejΩ) = H(ejΩ)X(ejΩ) , H(ejΩ) = b0+b1e−jΩ

1+a1e−jΩ

• Amplitude characteristics: |H(ejΩ)|
• Phase characteristics: Arg{H(ejΩ)}
• A digital filter is stable if all poles are inside the unit circle
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Filter Specifications (LP Filter)
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Low−pass filter, f
samp

 = 48 kHz

Passband: |H(ej2πfT ) − 1| ≤ ε1 for 0 ≤ f ≤ fp

Stopband: |H(ej2πfT )| < ε2, fs ≤ f ≤ fsamp/2 (Hz)
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FIR vs IIR Filters

FIR or IIR filter? A causal FIR filter with M + 1 "taps" has:

H(ejΩ) = b0 + b1e
−jΩ + · · · + bMe−jMΩ

so h(n) = bn, n = 0, 1, . . . , M , and h(n) = 0 for n < 0 or n > M .

Pros and cons of FIR filters vs IIR filters:

+ H(ejΩ) and h(n) are linear functions of bi (but non-linear in ai)

+ FIR filters are always stable (all poles are in the origin)

+ FIR filters have linear phase if bi = ±bM−i (symmetry or
anti-symmetry)

- FIR filters need in general more coefficients to meet given
specifications on |H(ejΩ)|

In this project we focus on FIR filter design!

Applied Optimization Slide 15



CHALMERS�

�

�

�

Linear Phase FIR Filters

Assume M is odd and bi = bM−i (symmetry). Then:

H(ejΩ) = b0(1+e−jMΩ)+b1(e−jΩ +e−j(M−1)Ω)+ · · · = e−jMΩ/2A(Ω)

where

A(Ω) = 2b0 cos
MΩ
2

+ 2b1 cos
(M − 2)Ω

2
+ · · · + 2b(M−1)/2 cos

Ω
2

is a real function! Thus, the phase Arg{H(ejΩ)} = −(M/2)Ω is linear in

Ω - corresponds to a time-delay by M/2 samples and no phase distortion!

Similar calculations when bi = −bM−i and/or M even - still linear phase,

but real function A(Ω) slightly different.
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Least-Squares FIR Filter Design

An FIR filter with (anti-)symmetric coefficients has "perfect" (linear) phase.

We need only worry about the amplitude!

Natural and simple approach: specify desired response A(Ω, b) at a discrete

set of frequencies {Ωk}K
k=1

A(Ωk, b) = Ad(Ωk), k = 1, 2, . . . , K

where Ad(Ωk) is the desired response and

A(Ω, b) = 2
(

b0 cos
MΩ
2

+ b1 cos
(M − 2)Ω

2
+ · · · + b(M−1)/2 cos

Ω
2

)

(for the symmetric case with M odd). The dependency on the (M + 1)/2
filter parameters b = [b0, . . . , b(M−1)/2]T has been stressed.
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LS FIR Filter Design, cont’d

Weighted Least-Squares filter design:

bLS = arg min
b

K∑
k1

Wk|Ad(Ωk) − A(Ωk, b)|2

where Wk is a set of weights, used to emphasize certain frequencies or
frequency bands.

Linear LS-problem ⇒ explicit solution!

To solve this in, e.g. Matlab, express the magnitude response as

A(Ω, b) = φT (Ω)b

where

φT (Ω) = 2[cos
MΩ
2

, cos
(M − 2)Ω

2
, . . . , cos

Ω
2

]
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LS FIR Filter Design, cont’d

The LS problem can now be put in matrix-vector form as

bLS = arg min
b

‖ad − Φb‖2
W

where

ad = [Ad(Ω1), . . . , Ad(ΩK)]T (K × 1)

Φ = [φ(Ω1), . . . , φ(ΩK)]T (K × (M + 1)/2)

and W is a diagonal matrix with diagonal elements Wk.

The weighted norm is:

‖x‖2
W = xT Wx
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LS FIR Filter Design, cont’d

The normal equations are

ΦT WΦ bLS = ΦT Wad

and the LS-solution is

bLS = (ΦT WΦ)−1ΦT Wad

Never type this in Matlab, but use:

bLS = (W1/2Φ)\(W1/2ad)

where W1/2 has
√

Wk at the diagonal (generally a matrix square-root).

This is a numerically more stable implementation, using QR decomposition!
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Minimax FIR Filter Design

LS approach simple, but the optimal (according to specifications) is a

minimax design! Given desired response Ad(Ω), the weighted error is

E(Ω, b) = W (Ω) (Ad(Ω) − A(Ω, b))

where W (Ω) controls passband ripple vs stopband damping.

Minimax (Chebyshev) filter design:

bPM = arg min
b

max
Ω∈O

|E(Ω, b)|

where O is the set of frequencies where specifications exist, normally the

passband and stopband. "PM" stands for Parks and McClellan.
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Minimax FIR Filter Design:
Equiripple Property

"Easy" to see that the error |E(Ω, bPM )| has equi-ripple - the maximum

|E(Ωi, bPM )| = δ is "generically" attained at (M + 3)/2 frequencies Ωi,

with alternating sign of E(Ω). This is the "alternation theorem".

If the Ωis were known, we could use this insight to find bPM by solving a

linear equation system ((M + 3)/2 equations for (M + 3)/2 unknowns,

including δ). Parks and McClellan’s algorithm iterates between solving for

b and δ, and updating the Ωis by finding all local maxima in an efficient

way. In Matlab, this is called firpm. Your goal is to implement your own

algorithm, and compare with firpm!
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Exercises: FIR Filter Design

The tasks consist of implementing Matlab functions for LS (with weighting)

and minimax FIR filter design. The functions should then be compared with

the existing ones in Matlab. As a test example we use the following lowpass

specifications (with fsamp = 1 Hz):

• Passband: 0 ≤ f ≤ 0.25, corresponding to 0 ≤ Ω ≤ π/2

• Passband ripple: 20 log10(1/ε1) < 3 dB

• Transition band (don’t care region): 0.25 < f < 0.3

• Stopband: 0.3 ≤ f ≤ 0.5

• Damping: 20 log10(1/ε2) > 40 dB
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1. Warm-up. The simple averaging filter

y(n) =
1

M + 1

M�

k=0

x(n − k)

corresponds to an FIR filter with bk = 1/(M + 1), k = 0, . . . , M . Compute and display the
corresponding frequency response, using the Matlab commands:

» M = 10; %%% Filter order

» h = ones(M+1,1)/(M+1); %%% Impulse response

» [H,w] = freqz(h,1,1024); %%% Frequency response

» plot(w/2/pi,20*log10(abs(H))); %%% Magnitude plot in dB

» xlabel(’Frequency [normalized]’)

» ylabel(’Magnitude [dB]’)

Hopefully, you will see that this is a lowpass filter with bandwidth approximately 1/M and stopband
damping −13 dB (which does not improve with increasing M !).

2. Least-squares design. Write a Matlab function that implements the weighted least-squares digital FIR
filter design. The input should be:

• M , the filter order (corresponding to M + 1 filter taps)

• F , a vector of frequency samples

• A, a vector of desired response values (of equal length as F )

• W , a vector of weights to be used in the LS solution
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The output of the function is the filter coefficients bLS . Hint: the following commands are useful for
setting up the matrix Φ, avoiding for-loops that are slow in Matlab:

» MM = (M:-2:1)/2;

» F = [linspace(0,Fp,K/2) linspace(Fs,0.5,K/2)];

» Phi = 2*cos(2*pi*F’*MM);

3. Run your LS design for increasing filter orders M and different choices of passband and stopband
weights W . Use the following set of commands for the first run:

» M = 11; %%% Filter order

» K = 100; %%% Number of frequency samples

» Fp = 0.25; Fs = 0.3; %%% Passband and stopband edge

» F = [linspace(0,Fp,K/2) linspace(Fs,0.5,K/2)]; %%% Frequency
samples

» A = [ones(1,K/2) zeros(1,K/2)]; %%% Desired response

» Wpass = 1; Wstop = 1; %%% Passband and stopband weights

» W = [Wpass*ones(1,K/2) Wstop*ones(1,K/2)]; %%%

» bLS = LSdesign(M,F,A,W); %%% Name your function "LSdesign.m"

» [H,w] = freqz(bLS,1,1024); %%% Frequency response

» plot(w/2/pi,20*log10(abs(H))); %%% Check if the specifications
are met

» xlabel(’Frequency [normalized]’)
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» ylabel(’Magnitude [dB]’)

Spend some time to select the input to the filter so you get something that almost meets the
specifications of the test problem. Compare your results with that of Matlab’s implementation:
firls. Note that the syntax is slightly different for firls. You should use the following command:

» bFIRLS = firls(M,2*[0 0.25 0.3 0.5],[1 1 0 0],[Wpass Wstop]);

4. Parks-McClellan design. Write a Matlab function that implements the Parks-McClellan digital FIR
filter design for the low-pass case. The input should be:

• M , the filter order (corresponding to M + 1 filter taps).

• F , a vector of frequencies used to separate the frequency bands, i.e. F = [0, Fp, Fs, 0.5]

(assume a lowpass filter!).

• A = [1, 1, 0, 0], a vector used to define that there are two bands, where the first is a passband
and the second a stopband (only this case needs to be implemented).

• W = [Wpass, Wstop], specifies the weights for the passband and stopband respectively.

The output is the filter coefficients bP M , obtained by solving the minimax optimization problem:

bP M = arg min
b

max
Ω∈O

|E(Ω, b)|

where E(Ω, b) is the same weighted error as used in the LS-design:

E(Ω, b) = W (Ω) (Ad(Ω) − A(Ω, b)) .

The simplest way to solve the optimization problem is to use Matlab’s fminimax routine. See help
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fminimax for details. If you are really interested, you could also try to implement your own code
based on the iterative procedure described above. Contact viberg@chalmers.se in that case.
Regardless which implementation you have used, you should verify that your resulting filter is indeed
equi-ripple!

5. Spend some time to select the input to the filter (M and the weights) so that the resulting amplitude
response meets the specifications of the test problem. Compare your results with that of Matlab’s
implementation firpm. Use:

» bFIRPM = firpm(M,2*[0 0.25 0.3 0.5],[1 1 0 0],[Wpass Wstop]);

(there is also a command firpmord that estimates the necessary filter order to satisfy the given
specifications).
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