Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT)

2008-05-08

Caroline Olsson, M.Sc.

Topics

Short history of radiotherapy The IMRT process Inverse planning for IMRT Physical optimization criteria

Radiobiology Radiobiological modeling Biological optimization criteria Optimization algorithms for IMRT

Short history of radiotherapy

- X-rays were discovered in 1895 diagnostic radiology *W. C. Röntgen*
- X-rays therapuetically in 1896 and first textbook of radiotherapy in 1903

L. Freund

- Discovery of radioactivity in 1898 *A. H. Becquerel; Marie and Pierre Curie*
- Radiotherapy in MeV around 1950 by the use of linear accelerators (LINAC)

Conformal radiotherapy

Webb S.: The physical basis of IMRT and inverse planning. BJR 76, 678-689, 2003.

(a) conventional radiotherapy:

rectangularly-shaped fields with additional blocks and wedges (b) conformal radiotherapy (CRT) with uniform fluence (late 1980s): more convenient geometric field shaping using a multileaf collimator (MLC) (convex shapes)

(c) CRT with non-uniform fluence or intensity modulation (IMRT) (mid 1990s): varied intensity bixel-by-bixel within the shaped field (concave shapes)

Different treatment techniques

Conventional CRT uniform fluence

CRT IMRT

The IMRT process

Inverse planning for IMRT

- The optimzation parameters are the beamlet intensities
 - >>100 beamlets / treatment field
 - beamlet size 5-10 mm²)
- The anatomical volumes are represented by volume elements (voxels) organized into 3D matrices
 - >>1000 voxels / volume
 - voxel size $\sim 5 \text{ mm}^3$
- Linear relationship between beam intensity and dose in a voxel

$$D_i = \sum_j K_{ij} w_j$$

 D_i =dose in voxel *i*

 w_i =intensity level of beamlet j

 \mathbf{K}_{ij} =dose contribution from beamlet *j* to voxel *i*

Physical optimization criteria

- Optimization criteria are determined in terms of doses and irradiated volumes
 - Dose limits
 - Limits on volumes receiving certain specified dose
- Optimization problem formulation
 - (i) Target objective function + constraints on OARs
 - (*ii*) OAR objective function + constraints on target
 - (iii) Target and OAR objective function
- Penalty factors
 - Soft constraints
 - Hard constraints
- Relative importance factors

Physical optimization criteria Dose limits

- Maximal dose limit
 - A limitation of the maximal dose to a tolerance threshold (target and OAR)

$$D_i \leq D_{max}, \forall i \in V$$

- Minimum dose limit
 - A limitation of the minimum dose to a tolerance threshold (target)

$$D_i \ge D_{min}, \forall i \in V$$

Bortfeld T.: Optimized planning using physical objectives and constraints.

Seminars in Radiation Oncology, Vol 9, No 1, 20-34, 1999.

Physical optimization criteria Dose-volume limits

- Dose-volume (DVH) limit
 - No more than V_{max} % of the volume should receive more than a dose of D_{max}

 $D_i \leq D_{max}, \ \forall i \in V_{max}$

Figure 3. Structures with a large volume effect are more appropriately spared through the application of dose-volume histogram (DVH) constraints. They prevent the DVH from going above the point (D_{max}, V_{max}) .

Bortfeld T.: *Optimized planning using physical objectives and constraints.* Seminars in Radiation Oncology, Vol 9, No 1, 20-34, 1999.

Physical optimization criteria Target and OAR objective function

F = overall objective function w_t = relative importance of target F_{target} = target objective function k = number of OARs $w_{O,k}$ = relative importance of OAR k F_{OAR} = OAR objective function

 $H(\cdot)$ = Heaviside function

 N_t = number of voxels in target D_i = dose to voxel *i* D_{presc} = prescribed dose to target D_{min} = minimum dose to voxel *i* D_{max} = maximum dose to voxel *i* $c_{t,min}$ = penalty associated with underdosage $c_{t,max}$ = penalty associated with overdosage

 N_o = number of voxels in OAR

 D_{dv} = dose-volume constraint dose

- $c_{O,max}$ = relative penalty weight for overdosage
- $c_{O,dv}$ = relative penalty weight for violation of dose-volume constraint
- N_{dv} = number of voxels in OAR whose dose must be below the dose-volume constraint

$$\mathbf{F} = w_t \, \mathbf{F}_{\text{target}} + \sum_k w_{O,k} \, \mathbf{F}_{\text{OAR}}$$

$$f_{\text{target}} = \frac{1}{N_t} \left\{ \begin{array}{l} \sum_{i=1}^{N_t} [D_i - D_{presc}]^2 \\ + c_{t,\min} \sum_{i=1}^{N_t} [D_i - D_{min}]^2 \bullet H(D_{min} - D_i) \\ + c_{t,\max} \sum_{i=1}^{N_t} [D_i - D_{max}]^2 \bullet H(D_i - D_{max}) \end{array} \right\}$$

$$F_{OAR} = \frac{1}{N_{O}} \begin{pmatrix} c_{t,max} \sum_{i=1}^{N_{O}} [D_{i} - D_{max}]^{2} \bullet H(D_{i} - D_{max}) \\ + c_{t,dv} \sum_{i=1}^{N_{dv}} [D_{i} - D_{dv}]^{2} \bullet H(D_{i} - D_{dv}) \end{pmatrix}$$

IMRT treatment planning system

RaySearch Laboratories: http://www.raysearchlabs.com

Radiobiology What happens in the body after radiotherapy?

- The interactions when radiation is absorbed in biological material result in excitation and ionization events
- The electronically unstable atoms and molecules are highly chemically reactive

=> free radicals that may break chemical bonds in cell nucleus molecules (DNA)

- In order to repair as much damage as possible, enzymatic reactions that act on the chemical damage take place
- The **biological effect of radiation** result principally from the unrepaired damage to the DNA

Radiobiology Cell survival curve after irradiation

- The cell survival curve describes the relationship between the radiation dose and the proportion of cells that survive.
- The surviving fraction of target cells SF(d), after a single radiation dose *d* can be fitted to experimental data using an exponential function with parameters α and β .

$$SF(d) = e^{-(\alpha d + \beta d^2)}$$
(1)

• After a course of n fractions and total dose D=nd $(SF(d))^n = e^{-D(\alpha+\beta d)}$ (2)

• This model of cell kill is called the linear-quadratic model (LQmodel) and is the model of choice to describe cell survival curves at therapeutic radiation doses.

Radiobiology Tissue architecture

Functional sub units (FSU)

The number of critical cells/FSU How the critical cells are organized into FSUs The number of FSUs necessary to maintain organ function

- Serial organization (critical element)
 - Damage to any one of the FSUs will cause a complication (maximum dose important)
- Parallel organization (critical volume)
 - Damage to a substantial fraction of the FSUs is necessary to cause a complication (mean dose important)

Radiobiology Radiobiological modeling

- Basic features
 - Sigmoid relationship between dose and response
 - Volume and fractionation effect
 - Non-uniform dose delivery
 - Prediction of Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP)
- Mechanistic
 - Based on the hypothesis that the response of an organ is determined by the survival of the cells of that organ/tissue
- Phenomenological
 - Derived by fitting mathematical models to clinical data

Radiobiology Mechanistic models

- Based on Poisson statistics
 - Tumour is controlled when no clonogenic cells survive
 - Normal tissue complication occurs when a critical amount of FSUs have been damaged
 - Expected number of surviving cells/FSUs given by $N_s = N_0 S(D)$
- Surviving fraction given by LQmodel

$$S(D) = e^{-\alpha D - \beta dD}$$

$$P(D,n) = \frac{e^{-N_s} N_s^n}{n!}$$
$$P(D,0) = e^{-N_s}$$

- $=e^{-N_0S(D)}$
- P = probability of response D = total dose $N_{s = expected number of surviving cells/FSUs}$ $N_0 = initial number of cells/FSUs$ S(D) = surviving fraction of cells/FSUs

$$P(D) = e^{N_0 e^{-\alpha D - \beta dD}}$$

- P = probability of response
- D = total dose
- N_0 = initial number of cells/FSUs
- α = linear coefficient of LQ-model
- β = quadratic coefficient of LQ-model
- d = dose/fraction

Radiobiology Phenomenological models

• Probit model

$$P(D,v) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x(D,v)} e^{-t^2/2} dt \quad (1)$$

• Logit model

$$P(D,v) = \frac{1}{1 + e^{x(D,v)}}$$
(2)

D = total uniform dose to volume v

v = volume irradiated

 $TD_{50}(\mathbf{v})$ = tolerance dose giving 50% probability of effect for uniform irradiation of volume v of an organ

m = inversely proportional to the slope of the dose-response curve

n = volume dependence of organ

$$x(D,v) = \frac{D - TD_{50}(v)}{mTD_{50}(v)}$$
(3)

$$TD_{50}(v) = TD_{50}(1)v^{-n}$$
 (4)

Radiobiology Generalized equivalent uniform dose (gEUD)

- The gEUD is based on the concept of a generalized mean dose, and is a means to reduce a complex 3D dose distribution to a single, biologically representative dose value
- The *a* parameter is tissue specific and describes the volume effect of the tissue under consideration
 - -a < 0: tumour tissue
 - $-a \approx 1$: parallell tissue
 - $-a \rightarrow \infty$: serial tissue

$$gEUD(\mathbf{D},a) = \left(\frac{1}{N}\sum_{i=1}^{N}D_{i}^{a}\right)^{\frac{1}{a}} (1)$$

- $\mathbf{D} =$ total dose
- a = tissue specific volume parameter
- N = number of voxels in tissue
- $D_i =$ dose in voxel i

Biological optimization criteria

- Same logical structure of the optimization as in the physically based, but different mathematical formulations of the optimization objectives
- Optimization problem formulation

 (i) TCP objective function + NTCP constraints
 (ii) NTCP objective function + TCP constraints
 (iii) TCP and NTCP objective function
- Maximum, minimum and/or DV based objectives (!?)

Biological Optimization Criteria Target and OAR objective function

F = overall objective function F_{target} = target objective function F_{OAR} = OAR objective function

 $gEUD_{presc} = \text{prescribed dose to target}$ $w_{t} = \text{relative importance of target}$ $w_{OAR} = \text{relative importance of OAR}$ $gEUD(\mathbf{D}) = \left(\frac{1}{N}\sum_{i=1}^{N}D_{i}^{a}\right)^{\overline{a}}$

 D_i = dose to voxel i N = number of voxels in structure a = tissue specific volume parameter

$$F = F_{target} \prod F_{OAR}$$

$$F_{\text{target}} = \frac{1}{1 + \left(\frac{gEUDpresc}{gEUD(\mathbf{D})}\right)^{w_t}}$$

$$F_{\text{OAR}} = \frac{1}{1 + \left(\frac{gEUD(\mathbf{D})}{gEUD_{presc}}\right)^{woar}}$$

Biologically based optimization compared to physically based optimization

Physically based optimization

Biologically based optimization

Wu et al.: Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int. J. Radiation Oncology Biol. Phys. 52(1), pp 224-235, 2002.

Optimization algorithms for IMRT Global and local extreme points

- The mathematically optimal solution may not be the clinically optimal solution
- Many beam configurations correspond to similar dose distributions

Optimization algorithms for IMRT

- Deterministic methods
 - Gradient methods
 - Steepest descent
 - Conjugate gradient
 - Newton's method
- Stochastic methods
 - Simulated annealing
 - Boltzmann annealing
 - Fast simulated annealing

Bortfeld T. 1999: Optimized planning using physical objectives and constraints.

Seminars in Radiation Oncology, Vol 9, No 1, 20-34.