MVE165, Applied Optimization Lecture 2

2008-04-03

The simplex method for linear programs

- ▶ Every linear program can be reformulated such that:
 - all constraints are expressed as equalities with non-negative right hand sides and
 - ▶ all variables are non-negative
- ► These requirements streamline the simplex method calculations
- ► Commercial solvers can handle also inequality constraints and "free" variables—the reformulations are automatically taken care of

The simplex method—reformulations

► The lego example:

$$\begin{bmatrix} 2x_1 & +x_2 \le & 6 \\ 2x_1 & +2x_2 \le & 8 \\ & x_1, x_2 \ge & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x_1 & +x_2 & +s_1 & = & 6 \\ 2x_1 & +2x_2 & +s_2 = & 8 \\ & & x_1, x_2, s_1, s_2 \ge & 0 \end{bmatrix}$$

- ▶ s_1 and s_2 are called *slack variables*—"fill out" the (positive) distances between the left and right hand sides
- ightharpoonup Surplus variable s_3 :

$$\begin{bmatrix} x_1 & + & x_2 & \geq & 800 \\ & x_1, x_2 & \geq & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 & + & x_2 - & s_3 & = & 800 \\ & & x_1, x_2, s_3 & \geq & 0 \end{bmatrix}$$

The simplex method—reformulations, cont.

▶ Non-negative right hand side:

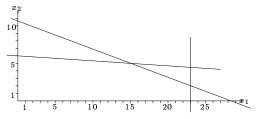
$$\begin{bmatrix} x_1 - x_2 & \leq -23 \\ x_1, x_2 & \geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 & \geq 23 \\ x_1, x_2 & \geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 - s_4 & = 23 \\ x_1, x_2, s_4 & \geq 0 \end{bmatrix}$$

► Free variables:

$$\begin{bmatrix} x_1 + x_2 \le 10 \\ x_1 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 \le 10 \\ x_1, x_2^1, x_2^2 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 + s_5 = 10 \\ x_1, x_2^1, x_2^2, s_5 \ge 0 \end{bmatrix}$$

Basic feasible solutions

- ▶ Consider m equations of n variables, where $m \leq n$
- ▶ Set n-m variables to zero and solve (if possible) the remaining $(m \times m)$ system of equations
- ▶ If the solution is *unique*, it is called a *basic* solution
- Such a solution corresponds to an intersection of m hyperplanes in \mathbb{R}^m (feasible or infeasible)
- Each extreme point of the feasible set is an intersection of m hyperplanes with all variable values ≥ 0
- ▶ Basic feasible solution ⇔ extreme point of the feasible set

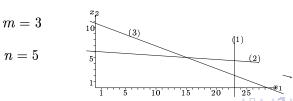


Basic feasible solutions—the family dairy

► Constraints:

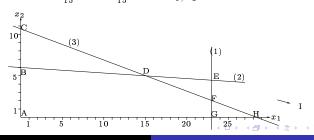
$$\begin{array}{ccccc} x_1 & \leq & 23 & (1) \\ 0.067x_1 & + & x_2 & \leq & 6 & (2) \\ 3x_1 & + & 8x_2 & \leq & 85 & (3) \\ & & x_1, x_2 & \geq & 0 \end{array}$$

► Add slack variables:



Basic and non-basic variables

basic	basic solution		${f non-basic}$	\mathbf{point}	feasible?	
variables				variables (0, 0)		
s_1, s_2, s_3	23	6	85	x_1,x_2	A	yes
s_1,s_2,x_1	$-5\frac{1}{3}$	$4\frac{1}{9}$	$28\frac{1}{3}$	s_3,x_2	\mathbf{H}	\mathbf{no}
s_1,s_2,x_2	23°	$-4\frac{5}{8}$	$10\frac{5}{8}$	x_1,s_3	\mathbf{C}	\mathbf{no}
s_1,x_1,s_3	-67	90	-185	s_2,x_2	I	\mathbf{no}
s_1,x_2,s_3	23	6	37	s_2,x_1	В	yes
x_1,s_2,s_3	23	$4\frac{7}{15}$	16	s_1,x_2	\mathbf{G}	yes
x_2,s_2,s_3	-	-	-	s_1,x_1	-	=
x_1,x_2,s_1	15	5	8	s_2,s_3	D	yes
x_1,x_2,s_2	23	2	$2\frac{7}{15}$	s_1,s_3	\mathbf{F}	yes
x_1, x_2, s_3	23	$4\frac{7}{15}$	$-19\frac{11}{15}$	s_1,s_2	\mathbf{E}	\mathbf{no}



Basic feasible solutions correspond to solutions to the system of equations that fulfil non-negativity

$$\begin{bmatrix} x_1 & +s_1 & = 23 \\ \frac{1}{1} & \frac{1}{5} & \frac{10}{10} & \frac{15}{20} & \frac{25}{25} & x_1 \end{bmatrix} \begin{bmatrix} x_1 & +s_1 & = 23 \\ 0.067x_1 & +x_2 & +s_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{bmatrix}$$

where

where
$$\begin{array}{c} \text{A: } x_1 = x_2 = 0 \Rightarrow \left[\begin{array}{cccc} s_1 & = 23 \\ s_2 & = 6 \\ s_3 & = 85 \end{array} \right] \\ \text{B: } x_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} s_1 & = 23 \\ s_2 & = 6 \\ s_{x_2} & + s_3 & = 85 \end{array} \right] \\ \text{D: } s_3 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & + s_1 & = 23 \\ 0.067x_1 & + x_2 & = 6 \\ 3x_1 & + 8x_2 & = 85 \end{array} \right] \\ \text{F: } s_3 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & + s_2 & = 23 \\ 0.067x_1 & + x_2 & = 6 \\ 3s_1 & + 8x_2 & = 85 \end{array} \right] \\ \text{G: } x_2 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_2 & = 6 \\ 3x_1 & + 8x_2 & = 85 \end{array} \right] \\ \text{G: } s_3 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_2 & = 6 \\ 3x_1 & + 8x_2 & = 85 \end{array} \right] \\ \text{C: } s_3 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_2 & = 6 \\ 3x_1 & + 8x_2 & = 85 \end{array} \right] \\ \text{C: } s_3 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_2 & = 6 \\ 3x_1 & + 8x_2 & = 85 \end{array} \right] \\ \text{C: } s_3 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_2 & = 6 \\ 3x_1 & + 8x_2 & = 85 \end{array} \right] \\ \text{C: } s_3 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_2 & = 6 \\ 3x_1 & + 8x_2 & = 85 \end{array} \right] \\ \text{C: } s_3 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_3 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_3 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_2 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_2 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_2 = s_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & + s_3 & = 85 \end{array} \right] \\ \text{C: } s_2 = s_1 = 0 \Rightarrow \left[\begin{array}{ccccc} x$$

Basic infeasible solutions correspond to solutions to the system of equations

$$\begin{bmatrix} x_1 & +s_1 & = 23 \\ 1 & 1 & +s_2 & +s_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{bmatrix}$$

where

where
$$\begin{array}{c} \text{H: } x_2 = s_3 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & +s_1 & = 23 \\ 0.067x_1 & +s_2 & = 6 \\ 3x_1 & +s_2 & = 6 \end{array} \right] \\ \text{C: } x_1 = s_3 = 0 \Rightarrow \left[\begin{array}{cccc} s_1 & = 23 \\ 8x_2 & +s_2 & = 6 \\ 8x_2 & = 85 \end{array} \right] \\ \text{I: } s_2 = x_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & +s_1 & = 23 \\ 0.067x_1 & = 6 \\ 3x_1 & +s_3 & = 85 \end{array} \right] \\ \text{-: } s_1 = x_1 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & +s_1 & = 23 \\ 8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{E: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 0.067x_1 & +x_2 & = 6 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 0.067x_1 & +x_2 & = 6 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \end{array} \right] \\ \text{C: } s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \end{array} \right] \\ \text{C: } s_1 = s_2 = 0 \Rightarrow \left[\begin{array}{cccc} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \end{array} \right] \\ \text{C: } s_2 = 0 \Rightarrow \left[\begin{array}{cccc}$$

Basic feasible solutions and the simplex method

- Express the *m* basic variables in terms of the n-m non-basic variables
- ▶ Example: Start at $x_1 = x_2 = 0 \Rightarrow s_1, s_2, s_3$ are basic

$$\begin{bmatrix} x_1 & +s_1 & = 23 \\ \frac{1}{15}x_1 & +x_2 & +s_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{bmatrix}$$

 \blacktriangleright Express s_1 , s_2 , and s_3 in terms of x_1 and x_2 :

$$\begin{bmatrix} s_1 = 23 & -x_1 \\ s_2 = 6 & -\frac{1}{15}x_1 & -x_2 \\ s_3 = 85 & -3x_1 & -8x_2 \end{bmatrix}$$

Express the objective in terms of the *non-basic* variables:

$$z = 2x_1 + 3x_2 \qquad \Leftrightarrow \qquad z - 2x_1 - 3x_2 = 0$$

Basic feasible solutions and the simplex method

▶ The first basic solution can be represented as follows

- ▶ The marginal values for increasing the non-basic variables x_1 and x_2 from zero are 2 and 3, respectively.
- \Rightarrow Choose x_2 let x_2 enter the basis Draw graph!!
 - ▶ One basic variable $(s_1, s_2, \text{ or } s_3)$ must leave the basis. Which one?
 - ▶ The value of x_2 can increase until some basic variable reaches the value 0:

$$\begin{array}{l} (2): s_2 = 6 - x_2 \geq 0 & \Rightarrow x_2 \leq 6 \\ (3): s_3 = 85 - 8x_2 \geq 0 & \Rightarrow x_2 \leq 10\frac{5}{8} \end{array} \right\} \Rightarrow \begin{array}{l} s_2 = 0 \text{ when} \\ x_2 = 6 \\ \text{(and } s_3 = 37) \end{array}$$

 \triangleright s_2 will leave the basis

Change basis through row operations

Eliminate s_2 from the basis, let x_2 enter the basis using row operations:

	operation							
-z	$+2x_{1}$	$+3x_{2}$				=	0	(0)
	x_1		$+s_1$			=	23	(1)
	$\frac{1}{15}x_1$	$+\mathbf{x_2}$		$+s_2$		=	6	(2)
	$3x_1$	$+8x_{2}$			$+s_3$	=	85	(3)
$\overline{-z}$	$+\frac{9}{5}x_1$			$-3s_{2}$		=	-18	$(0) - 3 \cdot (2)$
	x_1		$+s_1$			=	23	$(1)\!-\!0\!\cdot\!(2)$
	$\frac{\frac{1}{15}x_1}{\frac{37}{37}x_1}$	$+x_2$		$+s_2$		=	6	(2)
	$\frac{37}{15}x_1$			$-8s_{2}$	$+s_3$	=	37	$(3)-8\cdot(2)$

- ▶ Corresponding basic solution: $s_1 = 23$, $x_2 = 6$, $s_3 = 37$.
- Nonbasic variables: $x_1 = s_2 = 0$
- ▶ The marginal value of x_1 is $\frac{9}{5} > 0$. Let x_1 enter the basis
- ▶ Which should leave? s_1 , x_2 , or s_3 ?

Change basis ...

▶ The value of x_1 can increase until some basic variable reaches the value 0:

$$\begin{array}{lll} (1): s_1 = 23 - x_1 \geq 0 & \Rightarrow x_1 \leq 23 \\ (2): x_2 = 6 - \frac{1}{15} x_1 \geq 0 & \Rightarrow x_1 \leq 90 \\ (3): s_3 = 37 - \frac{37}{15} x_1 \geq 0 & \Rightarrow x_1 \leq 15 \\ \end{array} \right\} \Rightarrow \begin{array}{ll} s_3 = 0 \text{ when} \\ x_1 = 15 \end{array}$$

- \triangleright x_1 enters the basis and s_3 will leave the basis
- ▶ Perform row operations:

Change basis ...

- ▶ Let s_2 enter the basis (marginal value > 0)
- ▶ The value of s_2 can increase until some basic variable = 0:

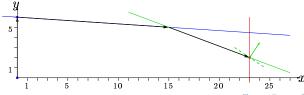
$$\begin{array}{lll} (1): s_1 = 8 - 3.24 s_2 \geq 0 & \Rightarrow s_2 \leq 2.47 \\ (2): x_2 = 5 - 1.22 s_2 \geq 0 & \Rightarrow s_2 \leq 4.10 \\ (3): x_1 = 15 + 3.24 s_2 \geq 0 & \Rightarrow s_2 \geq -4.63 \end{array} \right\} \Rightarrow \begin{array}{ll} s_1 = 0 \text{ when} \\ s_2 = 2.47 \end{array}$$

- \triangleright s_2 enters the basis and s_1 will leave the basis
- ▶ Perform row operations:

Optimal basic solution

$\overline{-z}$		$-0.87s_{1}$		$-0.37s_{3}$	=	-52
		$0.31s_1$	$+s_2$		=	2.47
	x_2	$-0.37s_{1}$		$+0.12s_{3}$	=	2
$\underline{}$ x_1		$+s_1$			=	23

- ▶ No marginal value is positive. No improvement can be made
- ▶ The optimal basis is given by $s_2 = 2.47$, $x_2 = 2$, and $x_1 = 23$
- ▶ The variables s_1 and s_3 are non-basic
- ▶ The optimal value is z = 52



Summary of the solution course

basis	-z	x_1	x_2	s_1	s_2	s_3	RHS
$\overline{-z}$	1	2	3	0	0	0	0
$\overline{s_1}$	0	1	0	1	0	0	23
s_2	0	0.067	1	0	1	0	6
s_3	0	3	8	0	0	1	85
-z	1	1.80	0	0	-3	0	-18
s_1	0	1	0	1	0	0	23
x_2	0	0.07	1	0	1	0	6
s_3	0	2.47	0	0	-8	1	37
$\overline{-z}$	1	0	0	0	2.84	-0.73	-45
$\overline{s_1}$	0	0	0	1	3.24	-0.41	8
x_2	0	0	1	0	1.22	-0.03	5
x_1	0	1	0	0	-3.24	0.41	15
$\overline{-z}$	1	0	0	-0.87	0	-0.37	-52
$\overline{s_2}$	0	0	0	0.31	1	-0.12	2.47
x_2	0	0	1	-0.37	0	0.12	2
x_1	0	1	0	1	0	0	23

Summary of the simplex method

basis is optimal.

- ▶ Optimality condition: The entering variable in a maximization (minimization) problem should have the largest positive (negative) marginal value (reduced cost). The entering variable determines a direction in which the objective value increases (decreases).

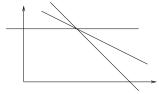
 If all reduced costs are negative (positive), the current
- ▶ Feasibility condition: The leaving variable is the one with smallest nonnegative ratio.
 - Corresponds to the constraint that is "reached first"

Solve the lego problem using the simplex method!

Steps of the simplex method: see Taha, p. 100

Degeneracy

- ▶ If the smallest nonnegative ratio is zero, the value of a basic variable will become zero in the next iteration
- ▶ The solution degenerate
- ▶ The objective value will in fact *not* improve in this iteration
- ▶ There is a risk for *cycling* around (non-optimal) bases
- ► The reason is that there is a redundant constraint that "touches" the feasible set
- ► Example:



▶ There are computational rules to prevent from cycling

Unbounded solutions

- ▶ If all ratios are negative, the variable entering the basis may increase infinitely
- ▶ The feasible set is unbounded
- ▶ In a real applications this would probably be due to some incorrect assumption
- Example: minimize $z=-x_1$ $-2x_2$ subject to $-x_1$ $+x_2$ ≤ 2 $-2x_1$ $+x_2$ ≤ 1 $x_1, x_2 \geq 0$

DRAW GRAPH!!

Unbounded solutions

A feasible basis is given by $x_1 = 1$, $x_2 = 3$, with corresponding tableau:

Homework: Find this basis using the simplex method.

basis	-z	x_1	x_2	s_1	s_2	RHS
$\overline{-z}$	1	0	0	5	-3	7
$\overline{x_1}$	0	1	0	1	-1	1
x_2	0	0	1	2	-1	3

- \triangleright Entering variable is s_2
- Row 1: $x_1 = 1 + s_2 \ge 0 \Rightarrow s_2 \ge -1$
- Row 2: $x_2 = 3 + s_2 \ge 0 \Rightarrow s_2 \ge -3$
- No leaving variable can be found, since no constraint will prevent s_2 from increasing infinitely

Starting solution—finding an initial base

► Example:

▶ Add slack and surplus variables

▶ How to find an initial basis? Only s_2 is obvious!

Artificial variables

- ▶ Add artificial variables a_1 and a_2 to the first and second constraints, respectively
- ▶ Solve an artificial problem: minimize $a_1 + a_2$

- ▶ This problem is called "phase one" problem
- An initial basis is given by $a_1 = 14$, $a_2 = 2$, and $a_2 = 19$:

basis	-w	x_1	x_2	s_1	s_2	a_1	a_2	RHS
$\overline{-w}$	1	-5	2	1	0	0	0	-16
a_1	0	3	2	0	0	1	0	14
a_2	0	2	-4	-1	0	0	1	2
s_2	0	4	3	0	1	0	0	19

Find an initial solution using artificial variables

 $ightharpoonup x_1 \text{ enters} \Rightarrow a_2 \text{ leaves (then } x_2 \Rightarrow s_2, \text{ then } s_1 \Rightarrow a_1)$

1		2		\	\			1 1/
basis	-w	x_1	x_2	s_1	s_2	a_1	a_2	RHS
$\overline{-w}$	1	-5	2	1	0	0	0	-16
a_1	0	3	2	0	0	1	0	14
a_2	0	2	-4	-1	0	0	1	2
s_2	0	4	3	0	1	0	0	19
$\overline{-w}$	1	0	-8	-1.5	0	0		-11
$\overline{a_1}$	0	0	8	1.5	0	1		11
x_1	0	1	-2	-0.5	0	0		1
s_2	0	0	11	2	1	0		15
-w	1	0	0	-0.045	0.727	0		-0.091
$\overline{a_1}$	0	0	0	0.045	-0.727	1		0.091
x_1	0	1	0	-0.136	0.182	0		3.727
x_2	0	0	1	0.182	0.091	0		1.364
$\overline{-w}$	1	0	0	0	0			0
s_1	0	0	0	1	-16			2
x_1	0	1	0	0	-2			4
x_2	0	0	1	0	3			1

A feasible basis is given by $x_1 = 4$, $x_2 = 1$, and $s_1 = 2$

Infeasible linear programs

- ▶ If the solution to the "phase one" problem has optimal value = 0, a feasible basis has been found
- \Rightarrow Start optimizing the original objective function z from this basis (homework)
 - ▶ If the solution to the "phase one" problem has optimal value w > 0, no feasible points exists
 - ▶ What would this mean for a real application?
 - ▶ Alternative: *M*-method (Big-*M* method): Add the artificial variables to the original objective—with a large coefficient Example:

minimize
$$z = 2x_1 + 3x_2$$

$$\Rightarrow$$
 minimize $z_a = 2x_1 + 3x_2 + Ma_1 + Ma_2$

Alternative optimal solutions

► Example:

$$\begin{array}{ccccc} & \text{minimize} & z = & 2x_1 & +4x_2 \\ & \text{subject to} & & x_1 & +2x_2 & \leq 5 \\ & & & x_1 & +x_2 & \leq 4 \\ & & & & x_1, x_2 & \geq 0 \end{array}$$
 Draw graph!!

- ▶ The extreme points $(0, \frac{5}{2})$ and (3, 1) have the same optimal value z = 10
- ▶ All solutions that are positive linear (convex) combinations of these are optimal:

$$(x_1, x_2) = \alpha \cdot (0, \frac{5}{2}) + (1 - \alpha) \cdot (3, 1), \quad 0 \le \alpha \le 1$$

Recommended exercises

- ▶ Problem set 3.1A 1–3 & 5
- ▶ Problem set 3.1B 1 & 4 (only modelling part)
- ▶ Problem set 3.2A 1 & 4
- ▶ Problem set 3.3B 7 & 8
- ▶ Problem set 3.4A 9
- ▶ Problem set 3.4B 4 & 5
- ▶ Problem set 3.5A 2
- ▶ Problem set 3.5B 2
- ▶ Problem set 3.5C 2