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Global average surface
temperature 1850-2005

Temperature Differences (°C) with

respect to 1961-1990
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What do we know about climate

change

m There are a natural greenhouse effect. (The
most important natural greenhouse gases are
carbon dioxide and water vapor)

m The concentration of carbon dioxide and other
greenhouse gas has increased Iin the
atmosphere.

m As the concentration of greenhouse gases
Increases, so does the temperature, however
unceratin to which extent.

m There has been climate change, but we have
still not seen the full effect of out emissions



Long-term stabilization targets

1 23 45 67 ? g AT
‘ i i 1 1 1 L _’("C)
1000~ $1000 | : : —— —
E - o
P
& 800- S750 |
£ .
. $650
| |——
600 sssof ||
| T®
S450 | Lo
400- - |
g S0 e
0 - Range of variation S
200-L tmmzoo.ooovem | |
1800 1800 2000 2100 2200 '
Year a b

SCIENCE ¢ VOL. 276 ¢ 20 JUNE 1997 * www.sciencemag.org Azar & Rodhe



crawvers BN
CO,-C emissions per capita, 2002
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Emission scenarios

Emission scenarios
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Research questions

m Which energy technologies are the
cheapest to use?

m \What is the cost of reducing the
emissions?

m \Which interrelations are there In the
energy system?

m \Where Is It best to use biomass?
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Objective function

m Minimize the discounted cost of the energy
system
m Data
Energy cost
Capital costs for energy conversion
Distributions costs
Vehicles cost
Discount rate



Discounting

m Do you prefer the get 1000 USD today or
In 10 years?

m We are richer in the future
m \We get interest at the bank
m Uncertainty about the future



> A

m C, total cost, A(t) annual cost, t time
m Discount rate, r, 5 %



Main contraints

m Emission constraints

m Supply must be equal demand
m Fossil resource constraints

m Renewable energy constraints



Emission cap
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Non-renewable resources
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Physical potential of renewable energy

Human energy use — 410 EJ/yr

iy

Biological production — 1 800 EJ/yr

Wind, waves, thermal energy in
oceans — 11 700 EJ/yr

Solar radiation —
5 440 000 EJ/yr
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Nuclear power

U-235+n->X+Y+2-3n+E

0.7% of natural uranium is U-235, the rest

Is U-238.

Pros
m No CO, emissions

m Large resource IN sea
water

m Relatively cheap

cons

m \Waste

m Limited reserves

m \Weapon proliferation
m Accidents
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Carbon capture and storage (CCS)
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Energy carrier

m Hydrogen H2
Fossil fuels with CCS
Bioenergy (with CCS)
Solar energy

m Synthetic fuels CH2
Fossil fuels with CCS
Bioenergy (with CCS)

m Electricity
Fossil fuels with CCS

Nuclear power
Solar energy
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Vehicles typs

m Hybrid cars

35% more efficent for personal transport
m Plug-in hybrid

Charged from the grid

m Hydrogen fuel cells
70 % more efficient



Global baseline scenario
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400 ppm scenario, nuclear power

and CCS allowed

Primary energy supply
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400 ppm, limited nuclear, CCS

allowed
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400 ppm, no nuclear and no CCS

(EJ)
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tabilization is possible at limited costs — markets can supply
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Vehicle costs, carbon price 1000

USD/ ton C
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400 ppm scenario, limited nuclear
CCS allowed
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Industrial process heat
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District heating in Sweden, a
carbon tax since 1991
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Where Is It most cost-efficient to
reduce emission?

Emissions per sector
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Marginal abatement cost

m Shadow price of emissions
m [nflate with discount rate

M (t) = m(t)(L+r)"

m M(t) carbon tax in net present value
m M(t) shadow price generated in the model



Carbon emissions and carbon price
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What does this model do?

m Predict (what will happen in the future)
m Prescribe (how ought the future look like)

m Describe (How does the energy system
work)
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Technological change

m Exogenous
Costs decrease by time

m Endogenous
Costs decrease as a result of investments



Specific Cost (US$ 1990/kW)
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Foresight

m Perfect foresight
Finds the cost-effective solution
Foresee potential cost reduction

m Limited foresight
Does not find cost-effective solution

Future cost-reductions Is unknown
Towards model of market behaviour
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Modelling path dependency

m Base case
Cap and trade system only

m Technology policy case
Cap and trade system
200,000 fuel cell vehicles in 2040
40 GWp solar pv in 2040
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Summary

m Energy system models can

Give guidance on how we ought to develop
the energy system

Give better understanding of good use of
scarce resources

Give estimates of the cost of stabilizing the
carbon emissions



