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Assignment 3a: Investment planning

Given below is the description of the assignment Investment Planning. An
implementation of the model in AMPL is found on the course homepage:
http://www.math.chalmers.se/Math/Grundutb/CTH/mve165/0809

The file co2.run should be edited in order to solve the different instances of
the model, as described in the exercises below.

To pass the assignment you should (in groups of two persons) (i) write a de-

tailed report that gives satisfactory answers and explanations to the exercise
questions. The report should be e-mailed to anstr@chalmers.se

at the latest on Friday 15 of May 2009.

Your shall also (ii) present your project orally at a seminar
on Tuesday 19 of May 2009.

You are strongly adviced to start working on the project exercises in

good time before the deadline! The solution time for the solver CPLEX
(in the stochastic case) is usually between 30 seconds and three minutes. For
the construction of Pareto graphs, several such solutions must be computed,
which quickly leads to total solution times of 15–20 min.

We also ask you to estimate the number of hours you spent on this assignment
and note this in your report or presentation.

Problem background

This project concerns the planning of energy-efficiency investments in a pulp
mill. These investments consist of measures to reduce the steam consumption
and measures that make use of the acquired steam surplus to enable exports of
electricity, district heating, and/or the wood-fuel called lignin. Furthermore,
the pulp mill is assumed to face a production increase, making certain capacity-
increasing investments necessary.

The main objective is to maximize the expected net present value of the in-
vestments, that is, to find the economically optimal investment plan. There
are also some special difficulties to consider:

• Uncertainties in future energy prices and associated CO2 emissions should
be considered.

• Not only economy, but also the resulting reductions of CO2 emissions
should be optimized. This yields a multiobjective programming model.



• Many of the decision variables are binary, representing whether an in-
vestment is made or not.

Multistage stochastic programming

Investment decisions are assumed to be made “here-and-now”, before uncer-
tainties about the energy market are resolved and before any changes in, for
example, energy prices occur. A point in time when investment decisions can
be made is followed by a period of five years, when no new investments can
be made. The cash flow of the second stage (which is the period when no
investments can be made) is a function of the previous investment decisions,
the energy prices, and the operative decisions. If, for example, investments
are made in a steam turbine in the first stage, the income in the second stage
depends on the size of the turbine, the electricity price, and the amount of
steam that is passed through the turbine.

After each investment period, new investments can be made, which are then
followed by new periods with realizations of uncertain parameters and changed
cash flows. A model of this kind, with two types of decisions where one is a
reaction to the other as well as to the realization of the uncertain parameters,
is termed a multistage recourse model. The uncertain parameters are modelled
using scenarios.

CO2 emissions in a systems perspective

Improving energy efficiency leads to global reductions of CO2 emissions. For
example, by reducing the use of fossil fuels, the emissions are directly reduced
on-site. The reduction of biomass use will also lead to CO2 emissions reduc-
tions, but in this case off-site. The reason is that biomass is assumed to be a
limited resource, and hence by using less of it at one plant more can be used to
substitute fossil fuels elsewhere, thereby reducing the overall emissions. Also
reduced imports or increased exports of electricity affect the net CO2 emissions.

This line of reasoning makes the assumptions about the surrounding energy
market very important for an application like this. Assume, for example,
that the mill can increase its electricity production. The produced electricity
enables decreased electricity production somewhere else in the grid. Today
this reduction will take place in a coal-fired condensing power plant. The
reduction in emissions will be quite high. In the future, the reduction might
be in a natural gas combined cycle plant, or in a coal-fired condensing power
plant with a carbon capture unit, in which case the emissions reductions will
be substantially lower. In this model, these assumptions are handled in the
scenario model. The scenario model used here is built from three different
blocks of energy market data, each based on different assumptions about the
energy market prices and emissions.
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The mathematical model

Only some important parts of the mathematical model are described here. A
complete description of the model, including all constraints and variables, can
be found in the article “A Scenario-Based Stochastic Programming Model for
the Optimization of Process Integration Opportunities in a Pulp Mill”, which
can be found on the course homepage.

There have also been some changes to the model used in this project compared
to the one used in the article. This concerns the scenario model and the
multiple objectives, and hence those parts of the model will be described in
more detail here.

A table “translating” the notation used here to that used in the AMPL code is
found on page 8.

The scenario model

The scenario tree used is illustrated in the figure below.
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Every node n in the scenario tree corresponds to a specific realization of un-
certain parameters at a specific stage. The scenario tree is here constructed
from three building blocks, each representing one realization of the uncertain
parameters. Node n = 0 is called the root, denoted by R, and corresponds
to the known deterministic state at the beginning of the process. Each new
level ℓ(n) of nodes n in the scenario tree represents a new stage in the decision
process. A scenario is the realization of a root–to–leaf path in the tree. By
construction, any node n except the root node has exactly one parent node
p(n) at the previous level. The set of all nodes n is denoted by N .
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Data for the building blocks are found in the AMPL data file. In the AMPL
file the scenarios are defined by the nodes of which they consist, and for each
node, the corresponding building block is defined. The probability of each
scenario is defined; this also determines the probability for each of the nodes.
To limit the computation times for this project exercise, it is assumed that
investments can only be made in the first three levels1 of the scenario tree (i.e.
for ℓ(n) ∈ {1, 2, 3}).

The two objectives

The economic objective is to find the combination of investments resulting in
the highest expected net present value (NPV). The objective is thus given by

maximize fNPV :=
∑

n∈N

prn [φ(ℓ(n))fR(αn, ξn) − ψ(ℓ(n))fC(x̂n, ŷn, δn)],

where prn is the probability of node n, φ and ψ are factors used to account
for discount rates and time, fR is the yearly revenue—a function of the energy
exports αn and the uncertain parameters ξn of node n—and fC is the total
capital expenditure—a function of the investment decisions, x̂n, ŷn, and δn, in
node n.

The yearly revenue is calculated as the sum of energy exports multiplied by
their net income, that is, the difference between the selling price and the op-
erating cost. The total capital expenditure is given by the sum of the costs of
the investments made in the node. A distinction is made in the model between
fixed-cost measures m ∈ M , which (usually) result in a reduced use of steam
at the mill, and investments u ∈ U which make use of the acquired steam
surplus to generate an energy export opportunity2. The cost of the first type
of investment m ∈ M is a constant. For the second type of investment u ∈ U

the cost is a function of the equipment size.

The CO2 objective is to maximize the expected net CO2 emissions reductions,
and is given by

maximize fCO2 :=
∑

n∈N

prnφ(ℓ(n))fEm(αn, ξn),

where fEm is the yearly emissions reduction, which is a function of the en-
ergy exports αn and the uncertain parameters ξn. According to the above
formulation, the CO2 emissions are discounted analogously as cash flows.

Here, the ε-constraint method will be used to solve the multiobjective op-
timization problem. In this method, only one of the objective functions is
optimized for, while the other is reformulated as a constraint. Here, fNPV is
selected for optimization. The CO2 objective is then reformulated as fCO2 ≥ ε.

1In the original setting, described in the referenced article, investments could also be
made at level 4.

2The set of “steam-using” options is given by U ={BP, CT, LIG, DH100, DHLP,
DH60} where BP=back-pressure turbine, CT=condensing turbine, LIG=lignin extraction,
DH100=district heating using 100

◦C heat, DHLP=district heating using low-pressure steam,
and DH60=district heating using 60

◦C heat.
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The different preferences of the decision-makers are articulated by the different
choices of the value of the limit ε.

An overview of variables and constraints

The binary variables x̂n
m and ŷn

u control the investment cost and take the
value 1 in the node where investments are made. When an investment has
been made, the investment becomes “active” in the following nodes. An active
investment in steam savings means that the steam surplus is available for use,
and an active investment in, e.g., a turbine, means that the turbine capacity is
available. The binary variables xn

m and yn
u take the value 1 when the investment

is “active”. This relation between x̂n
m and xn

m is stated below. Corresponding
constraints are valid for ŷn

u and yn
u .

x0
m = 0, m ∈M, (1a)

xn
m = xp(n)

m + x̂p(n)
m − x̌p(n)

m , m ∈M, n ∈ N\R. (1b)

(The variable x̌n
m—and similarly y̌n

u—is introduced for the possibility to deac-
tivate investments.)

The steam savings from the measures m ∈ M are given by the parameters
smp. A steam balance on each steam pressure level p ∈ P means that the
steam flow ρn

up used for different options u ∈ U must not exceed the acquired
steam surplus plus the steam that is passed from higher pressure levels, minus
the steam that is passed to lower pressure levels. As an example, the steam
balance constraint for medium-pressure (MP) steam is given by

∑

u∈U\(Q∪L)

ρn
u,MP ≤

∑

m∈M

xn
msm,MP +

∑

u∈Q

(

ρn
u,HP−ρ

n
u,MP

)

hu,MP, n ∈ N. (2)

Here, the set Q is a set of options, which use steam of one pressure and let it
out at a lower pressure. The parameter hup (in the inequality (2), p = MP) is
a factor which is introduced due to the fact that when steam is passed from
higher to lower pressures, it will be superheated, and water will be added to
saturate the steam. L is a set of export options for which the above constraints
are replaced by other similar ones due to yearly demand variations.

Another important constraint controls the amount of steam required to achieve
a specific output αn

u of power, heat, or lignin, and is given by

αn
u ≤

∑

p∈P

qupρ
n
up + γn

u , u ∈ U\L, n ∈ N. (3)

As described above, the variable ρn
up denotes the flow of steam with pressure

p used for technology u in node n. The parameter qup relates the steam of
pressure p used for the power, lignin, or heat output for export option u ∈ U .
(The variable γn

u is a possible additional output for option u in node n, which
can be achieved without any steam input.)

The output αn
u of power, lignin, and district heating for the different technology

options is of course limited by the installed capacity βn
u in node n for option u.
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The relation between βn
u and the variable δn

ui, which is used in the linearized
cost function fC , can be stated similarly to the constraints above, which relate
xn

m to x̂n
m. This is expressed as

β0
u = 0, (4a)

βn
u = βp(n)

u +
∑

i∈Iu

δ
p(n)
ui , n ∈ N\R,u ∈ U, (4b)

where Iu is the set of linearization intervals used for export option u ∈ U . The
capacity constraint is then given by

αn
u ≤ βn

u − guy
n
u , u ∈ U\L, n ∈ N. (5)

(The parameter gu possesses a non-zero value only for the back-pressure tur-
bine, for which it defines the current capacity of an existing turbine at the
mill. By this formulation, the output αn

u will represent a net increase of the
electricity production in the turbine compared to today’s level.)

Exercises

The optimization model is implemented in AMPL in the model file co2.mod

with original data in co2.dat. The basic case assumed in these original model
and data files is defined by

• a single objective: the maximization of fNPV, and

• a discrete uniform probability distribution over the scenarios.

Use these original files and make necessary changes for solving the exercises.

• Choose objective function fNPV or fCO2 (add/remove commenting).

• The constraint fCO2 ≥ ε is represented in AMPL by CO2Decrease. Relax
this constraint by choosing lower values of ε (in AMPL: co2_limit), e.g.
ε = 0.

Basics

1. Find the economically optimal investment plan, i.e. solve the model with
no constraint on CO2 emissions.

(a) What is the expected net present value for this solution?

(b) What is the resulting CO2 reduction for this solution? (Hint:
display CO2Decrease.slack yields the difference fCO2 − ε.)

(c) What are the characteristics of the investment plan, i.e. what invest-
ments are made and when? The total investment plan must not be
described in detail. (Hint: Display the AMPL variables activate

to see which investments are made when and display size to see
the invested capacity of turbines etc.)
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2. Find the investment plan that maximizes the CO2 emissions reductions,
i.e. solve the model with the objective function fCO2 instead of fNPV.

(a) What is the CO2 reduction for this solution?

(b) What are the characteristics of the investment plan?

Constructing the Pareto graph

The solutions from 1) and 2) correspond to the extreme points of the Pareto
curve (f∗NPV and f∗CO2). This means that the resulting CO2 reductions for any
Pareto-optimal solution will lie between the two values obtained for the CO2

reductions.

3. Construct a graph (e.g. in Matlab or Excel) showing a number of (fairly
well spread) points on the Pareto curve: Define a set of 5–15 values
of ε between the minimum and maximum values established in tasks
1) and 2), and solve the model, maximizing fNPV for each value in the
set. Notice that, since the model is mixed-binary, there may be a positive
slack in the CO2 constraint also with increasing values of ε. The resulting
CO2 reduction should therefore be found considering this slack (i.e. fCO2

is in AMPL given by CO2Decrease.slack + co2_limit).

4. Discuss the appearance of the Pareto curve. Why is the decrease in fNPV

smaller when ε is increased for solutions close to the economic optimum?

Varying data – Sensitivity analysis

5. Investigate the sensitivity of the solution to variations in the assumed
probability distribution:

(a) Assume a probability of 1 for the BAU scenario, and probability
0 for the rest. Repeat tasks 1)–3) for this probability distribution.
Discuss the differences and similarities between the different results.

(b) Assume a probability of 1 for the S2 scenario, and probability 0 for
the rest. Again repeat tasks 1)–3) for this new probability distribu-
tion. Discuss the results, and compare to those of 5(a).

6. Investigate the sensitivity of the solution to changes in various investment
costs.

(a) The cost for the recovery boiler upgrade (RBU) is difficult to de-
termine, since the changes needed are different for each pulp mill.
The value used in the model (bRBU = 29.8 Me) was considered
an upper estimate when the original study was carried out. The
lower estimate for this cost was bRBU = 23.2 Me. Change this
value in the AMPL data file (the parameter name in AMPL is
measure_cost[RBU]), and investigate how this affects the economic
optimum for a discrete uniform probability distribution.
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(b) The cost for district heating piping is assumed to be split between
the pulp and paper company owning the pulp mill and the energy
company owning the district heating network. Assume that the
pulp and paper company must pay the entire cost, i.e. double this
value (in AMPL: measure_cost[Piping]) and investigate how this
affects the economic optimum for a discrete uniform probability
distribution.

AMPL notation

Sets

N NODES

R ROOT

P PRESSURE

L VARIED

M MEASURE

U USE

Q REDUC

Iu 1..ints[u]

Variables

αn
u output[u,n]

x̂n
m, ŷn

u activate[m,n], activate[u,n]

xn
m, yn

u active[m,n], active[u,n]

x̌n
m, y̌n

u deactivate[m,n], deactivate[u,n]

δn
ui newsize[u,i,n]

ρn
up flow[u,p,n]

γn
u free[u,n]

Parameters

prn prob[n]

ε co2_limit

bm measure_cost[m]

qup conv[u,p]

smp steam[m,p]

hup quench[u,p]

Other

n n

ℓ(n) level[n]

p(n) parent[n]

φ(ℓ(n)) pvf[level[n]-1]*pvf_sum

ψ(ℓ(n)) pvf[level[n]]*(1-residual[level[n]])

Constraints

(1a-b) Activation

(2) SteamBalance_MP

(3) SteamToOutput

(4a-b) InstalledSize

(5) Capacity
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