An integer linear program

(The optimal extreme point to the continuous model is fractional)

Branch and bound (in e.g. Cplex)

Relax integrality requirements \Rightarrow

linear, continuous problem $\Rightarrow (x^*, y^*) = (5\frac{1}{4}, 4\frac{3}{4})$

Search tree: branch over

fractional variable values

$$(x^*, y^*) = (5, 4\frac{2}{3})$$

$$x_1 \le 5$$

$$x_2 \le 4$$

$$x_2 \ge 5$$

$$\text{integer}$$

$$\text{not feasible}$$

$$\text{integer}$$

$$(x^*, y^*) = (6, 4)$$

$$(x^*, y^*) = (5, 4)$$

In the worst case ...

- It is reasonable to assume $T \approx 50$ time steps (or more)
- \Rightarrow 50 integer variables: z_0, \dots, z_{49}
- $\Rightarrow 2^{50} \approx 10^{15} \text{ branches}$
 - Solve one continuous problem in 10^{-6} seconds \Rightarrow 10^{9} seconds ≈ 30 years $(10^{-9} \text{ seconds} \Rightarrow \approx 1.5 \text{ weeks})$
 - It is not really this bad for us, but:

Better to generate facets so that all extreme points become integral

A facet is a "best possible" cutting plane

The smallest polyhedron containing all feasible points

• A general polyhedron defined by linear inequalities:

$$S = \left\{ \mathbf{x} \in \Re^n \left| \mathbf{A}^{\mathrm{T}} \mathbf{x} \ge \mathbf{b} \right. \right\}$$

• The integer points of a (bounded) polyhedron defined by linear inequalities:

$$S_{\text{int}} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}^{\text{T}} \mathbf{x} \ge \mathbf{b}, \text{integral} \} = \{ \mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^K \}$$

• We would like to find the convex hull of S_{int} : $P = convS_{int} =$

$$\left\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} = \sum_{k=1}^K \alpha_k \mathbf{x}^k, \sum_{k=1}^K \alpha_k = 1, \alpha_k \ge 0, k = 1, \dots, K \right\}$$

- $P \subseteq S$ is also a polyhedron
- It then holds that $\min_{\mathbf{x} \in S_{\text{int}}} \mathbf{c}^{\text{T}} \mathbf{x} = \min_{\mathbf{x} \in P} \mathbf{c}^{\text{T}} \mathbf{x}$
- Draw the convex hull of the integer points!!

Valid inequalities, faces and facets

- $\pi^T \mathbf{x} \leq \pi_0$ is a valid inequality for P if it holds for all $\mathbf{x} \in P$
- Face: $F = \{ \mathbf{x} \in P \mid \boldsymbol{\pi}^T \mathbf{x} = \pi_0 \}$ if $\boldsymbol{\pi}^T \mathbf{x} \leq \pi_0$ is a valid ineq. for P
- Facet: face of dimension n-1

For the small example

 \bullet Find all facets \Rightarrow no integrality requirements needed

A class of maintenance facets

In the basic problem, all necessary inequalities define facets! For the components p and q such that the lives T_p and T_q fulfil

$$2 \le T_q \le T_p - 1 \le 2 \cdot (T_q - 1)$$

a class of facets is defined by:

$$z_{\ell} + \sum_{t=\ell+1}^{\ell+T_p-2} (x_{pt} + x_{qt}) + z_{\ell+T_p-1} \ge 2, \qquad \ell = 1, \dots, T - T_p + 1.$$

For the example $(T_1 = 3, T_2 = 5 \Rightarrow p = 2, q = 1)$:

$$2 \le T_1 = 3 \le T_2 - 1 = 4 \le 2 \cdot (T_1 - 1) = 4$$

A facet is given by the inequality

$$z_2 + x_{13} + x_{14} + x_{15} + x_{23} + x_{24} + x_{25} + z_6 \ge 2$$

Construction of a valid inequality

$$x_{12} + x_{13} + x_{14} \qquad \geq 1$$

$$x_{14} + x_{15} + x_{16} \qquad \geq 1$$

$$x_{22} + x_{23} + x_{24} + x_{25} + x_{26} \geq 1$$
Aggregate $\Rightarrow x_{12} + x_{13} + 2x_{14} + x_{15} + x_{16} + x_{22} + x_{23} + x_{24} + x_{25} + x_{26} \geq 3 \quad (1)$

$$z_{2} \geq x_{12}$$

$$z_{6} \geq x_{16}$$

$$z_{2} \geq x_{22}$$

$$z_{6} \geq x_{26}$$
Aggregate $\Rightarrow 2z_{2} + 2z_{6} \geq x_{12} + x_{16} + x_{22} + x_{26} \quad (2)$

(1) and (2) \Rightarrow $2z_2 + x_{13} + 2x_{14} + x_{15} + x_{23} + x_{24} + x_{25} + 2z_6 \ge 3$

(3)

Construction cont'd

Multiply (3) by $\frac{1}{2}$: $z_2 + x_{13} + x_{14} + \frac{1}{2}x_{15} + \frac{1}{2}x_{23} + \frac{1}{2}x_{24} + \frac{1}{2}x_{25} + z_6 \ge \frac{3}{2}$ (4)

Round-up the coefficients of the LHS to the nearest integer (OK?!):

$$z_2 + x_{13} + x_{14} + x_{15} + x_{23} + x_{24} + x_{25} + z_6 \ge \frac{3}{2}$$

All numbers in the LHS are integral in a feasible solution to the integer program \Rightarrow Round-up the RHS to the nearest integer:

$$z_2 + x_{13} + x_{14} + x_{15} + x_{23} + x_{24} + x_{25} + z_6 \ge 2$$

We have shown that this inequality is valid for the maintenance polytope.

To show that it defines a facet takes a little more ...