Optimization models for the maintenance planning of aircraft engines

Michael Patriksson Department of Mathematical Sciences, Chalmers Department of Mathematical Sciences, Gothenburg University 20 April 2009

Project background

Maintenance of aircraft engines is expensive:

- spare parts cost up to 2 Mkr
- total cost for maintenance of a jet engine: 15–30 Mkr
- rent for a spare engine: 15 kkr/day

Opportunistic maintenance:

At each maintenance occasion, possible to *perform more maintenance than* what is absolutely *necessary*

⇒ totally fewer maintenance occasions

⇒ totally lower cost

The purpose of the project

 Create a *methodology* that generates good *replacement schedules* for components in aircraft engines

- Consider:
 - Life time restricted and "on condition"-components
 - Fixed cost when an engine/module is taken to the workshop
 - *Work costs* to set free engine modules their components
 - Utilize a *store* of used components
- *Minimize total flight hour cost* during the contract period

VAC:s existing value policy

Replace a part if its remaining value is less than the cost of a maintenance occasion

If the value (price) of a new part is less than the fixed cost then the part is always replaced regardless of its remaining life

Adjustment: replace the part only if its remaining life is less than a fictitious limit

A simple optimization model for the whole contract period

- For each component *i* in the module:
 - *Cost* of a new component: c_i
 - *Life* of a new component: T_i
 - *Remaining life* of current component: τ_i
- Contract period divided into T time periods t = 1,...,T
- Maintenance possible at start of each time period (*discrete time steps*)
- A *fixed cost* per maintenance occasion: *d*

A mathematical optimization model for maintenance planning

Basic mathematical model: one module, *N* parts, *T* time steps

minimize
$$\sum_{t=1}^{T} \left(\sum_{i \in N} c_i x_{it} + dz_t \right)$$

subject to
$$\sum_{t=1}^{\tau_i} x_{it} \ge 1, \qquad i \in N, \qquad \text{replace part before its remaining life is over}$$
$$\sum_{t=1}^{T_i+l-1} x_{it} \ge 1, \qquad l = 1, \dots, T - T_i + 1, \quad i \in N, \qquad \text{replace part at least once in a lifetime}$$
$$x_{it} \le z_t, \qquad t = 1, \dots, T, \quad i \in N, \qquad \text{replace part only at maintenance occation}$$
$$x_{it} \in \{0, 1\}, \qquad t = 1, \dots, T, \qquad i \in N, \\z_t \in \{0, 1\}, \qquad t = 1, \dots, T.$$

• $x_{it} \in \{0, 1\}$ can be relaxed to $x_{it} \ge 0$ integrality property

A maintenance schedule for four components in an engine module

Comparison of the methods

- An engine module with 10 components
- Only life time restricted (deterministic) components

Value policyOptimization

maintenance occasions

Comparison of the methods using stochastic simulations

- An engine module with 10 components
- Parts 1, 4, 5, 6, 9, 10 are OC (Weibull)

Value policyOptimization

• Average values from 200 scenarios

Part no

β

A store of used components

- For each part *i* in the module there is a *store of used* components at time 0 (at present maintenance occasion):
 - *Costs* for used components: k_{i1} , k_{i2} , ...
 - *Remaining lives* of used components: *t*_{*i*1}, *t*_{*i*2}, ...
- Additional variables:

 $s_{ij} = \begin{cases} 1 & \text{if used individual } j \text{ of component } i \\ & \text{from the store is used at time } 0 \\ 0 & \text{otherwise} \end{cases}$

Several modules in an engine

- Work costs to set modules free
- Work costs to set components free

A mathematical model for a whole engine parameters

 c_{it}^{m} = price of a spare of part *i* in module *m* at time *t* \widetilde{c}_{ik}^{m} = price for used individual k of part i in module m at t = 0 $a_{it}^{m} = \text{cost of removing part } i \text{ in module } m \text{ at time } t$ $b_{nt} = \text{cost of performing activity } n \text{ at time } t$ $d_t =$ fixed cost for maintaining the engine at time t T =length of planning period (#time steps) T_i^m = life of new part *i* in module *m* \widetilde{T}_{i}^{m} = remaining life of part *i* in currently in module *m* $e^{mi} = \#$ used individuals of part *i*, module *m* in store at t = 0 \overline{T}_{i}^{m} = remain. life of used indiv. k, part i, module m in store, t = 0 $f_m = 1$ if maint. of module *m* should be planned, = 0 if not

A mathematical model for a whole engine variables

 $x_{it}^{m} = 1$ if part *i* in module *m* is replaced at time *t*, = 0 if not $u_{ik}^{m} = 1$ if part *i* in module *m* is replaced by used individual k at t = 0, = 0 if not $y_{it}^{m} = 1$ if part *i* in module *m* is removed at time *t*, = 0 if not $z_t^m = 1$ if module *m* is maintained at time *t*, = 0 if not $v_{nt} = 1$ if activity *n* is performed at time *t*, = 0 if not $w_t = 1$ if the engine is maintained at time t, = 0 if not

Tests and results

- Discretization: 33,33 flight hours per time step
- Length of the planning period = 2500 flight hours, T=75
- Total number of parts in the engine = 61
- Number of modules in the engine = 7
- Number of variables in the model = 10425
- Integrality property for some of the variables
- Number of binary variables in the model = 5775

 $(2^{5775} \approx 2.8 \cdot 10^{1738})$

Advantage of simultaneous optimization

An old engine with a store of used spares at t=0

Optimization over:	# maintenance occasions	# replaced parts	Total cost (normalized)	CPU time (sec)
separate modules	19	90	1.222	3.08
the whole engine	6	92	1.000	1.25

Product development

Product development, continued

Product development, continued

Product development, continued

