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Solution methods for unconstrained optimization

◮ General iterative search method:

1. Choose a starting solution, x0 ∈ ℜn. Let k = 0
2. Determine a seach direction dk

3. Determine a step length, tk , by solving:

min
t≥0

ϕ(t) := f (xk + t · dk)

4. New iteration point, xk+1 = xk + tk · dk

5. If a termination criterion is fulfilled ⇒ Stop!
Otherwise: let k := k + 1 and return to step 2

◮ How choosing the search direction dk , the step length tk , and
the termination criterion?
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Search direction

◮ Goal: f (xk+1) < f (xk)

◮ How does f change locally in a direction dk at xk?

◮ Taylor expansion: f (xk + tdk) = f (xk) + t∇f (xk)Tdk +O(t2)

◮ For sufficiently small t > 0:
∇f (xk)Tdk < 0 ⇒ f (xk + tdk) < f (xk)

⇒ Definition:
If ∇f (xk)Tdk < 0 then dk is a descent direction for f at xk

If ∇f (xk)Tdk > 0 then dk is an ascent direction for f at xk

◮ We wish to minimize (maximize) f over ℜn:

⇒ Choose dk as a descent (an ascent) direction from xk
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An improving step

−5
−4

−3
−2

−1
0

1
2

3
4

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

dk

dk+1

xk

xk+1

Figur: At xk , the descent direction dk is generated. A step tk is taken in
this direction, producing xk+1. At this point, a new descent direction
dk+1 is generated, and so on.
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Step length—line search (minimization)

◮ Solve mint≥0 ϕ(t) := f (xk + t · dk) where dk is a descent
direction from xk

◮ A minimization problem in one variable

⇒ Solution tk

◮ Analytic solution: ϕ′(tk) = 0

◮ Solution methods: e.g., Golden section method (reduce the
interval of uncertainty, Chapter 13.2), Armijo’s method (not
in the book)

◮ In practice: Do not solve exactly, but to sufficient
improvement of the function value: f (xk + tkd

k) ≤ f (xk) − ε

for some ε > 0

Lecture 12 Applied Optimization



Line search
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Figur: A line search in a descent direction.
tk solves mint≥0 ϕ(t) := f (xk + t · dk)
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Line search—the Golden section method

Based on narrowing down the interval in which t∗ can lie

1. Let tℓb be a lower bound on t∗ (e.g. = 0)

and tub be an upper bound on t∗

2. Choose t1 = tub − α(tub − tℓb), t2 = tℓb + α(tub − tℓb)

where α ≈ 0.618 (the (inverted) golden ratio)

3. Evaluate ϕ(t1), ϕ(t2) and replace tℓb or tub with t1 or t2

4. Terminate or return to 2.

⇒ whichever of [tℓb, t2] or [t1, tub] provides the next interval, its
size will be α times the current

t
t1

t1

t2
t2

tℓb
tℓb

tub
tub

ϕ(t)

k = 0
k = 1 ϕ(t1) > ϕ(t2) ⇒
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Termination criteria

◮ Needed since ∇f (xk) = 0 will never be fulfilled exactly

◮ Typical choices, where εj > 0, j = 1, . . . , 4

(a) ‖∇f (xk)‖ < ε1

(b) |f (xk+1) − f (xk)| < ε2

(c) ‖xk+1 − xk‖ < ε3

◮ Often used in combination

◮ The search method only guarantees a stationary solution,
whose character is determined by the properties of f

(convexity, ...)
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Common special cases of search methods - SD

◮ Steepest ascent (descent) (or Gradient search)
Let the search direction be (minus) the gradient:

dk = +/–∇f (xk) (max/min)

Pros:

◮ Requires only gradient information
◮ Not so computationally demanding per iteration

Cons:

◮ (Very) Slow convergence towards a stationary point
◮ Each direction dk is perpendicular to the previous one dk−1 (if

the line search is solved exactly)—the iterate sequence is
zig-zagging
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Common special cases of search methods - Newton

◮ Newton’s method: Make use of second derivative
information (curvature). Requires that f is twice continuously
differentiable.

◮ Taylor expansion of f around x:
ϕx(d) := f (x) + ∇f (x)Td + 1

2d
T∇2f (x)d (≈ f (x + d))

◮ We wish to find a direction d ∈ ℜn such that
∇dϕx(d) = ∇f (x) + ∇2f (x)d = ∇f (x) + Hf (x)d = 0n

(a stationary point for ϕx) ⇒ dk = −Hf (x
k)−1∇f (xk)

◮ Observe that line search not needed, t = 1 (unit step)
◮ Only look for stationary points ⇒ dk the same for min/max

problems
◮ If f is quadratic (i.e., f (x) = a + cTx + 1

2x
TQx), then Newtons

method finds a stationary point in one iteration. Verify this!
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Common special cases of search methods - Newton

Pros:

◮ Fast convergence

Cons:

◮ Convergens towards a stationary point only guaranteed if
starting “sufficiently close” to one (If f is convex around the
starting point x (i.e., Hf (x) positive definite), then Newtons
method converges towards a local minimum)

◮ Newton does not distinguish between different types of
stationary points

◮ Requires more computations per iteration (matrix inversions)

◮ Does not always work (if det(Hf (x
k)) = 0)
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Common special cases of search methods - Newton

Practical adjustments of Newton’s method:

◮ Start using steepest ascent, then change to Newton

◮ Use dk = −Qk∇f (xk), where Qk ≈ Hf (x
k)−1 and Qk

positive (negative) definite (Quasi-Newton)

◮ Efficient updates of the inverse should be used

◮ Let Qk =
(

Hf (x
k)+/–Ek

)−1
such that Qk becomes

positive/negative definite, e.g., Ek = γI (which shifts all the
eigenvalues by +/–γ. This is called the Levenberg-Marquardt

modification)

Note: for large values of γ, this makes dk resemble the
steepest descent direction
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Optimization over convex sets

Up to now, we have looked at unconstrained optimization. Now:
minimize f (x) subject to x ∈ S

where S = { x ∈ ℜn | gi (x) ≤ 0, i = 1, . . . ,m } is a convex set

◮ Definition Feasible direction

If x ∈ S , then d ∈ ℜn is a feasible direction from x if a small
step in this direction does not lead outside the set S

Formally: d defines a feasible direction at x ∈ S if

∃δ > 0 such that x + td ∈ S for all t ∈ [0, δ]

◮ Definition Active constraints

The active constraints at x ∈ S are those that are fulfilled
with equality, i.e., I(x) = { i = 1, . . . ,m | gi (x) = 0 }

◮ Draw!!
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Optimality conditions

◮ Definition Feasible directions for linear

constraints

Suppose that gi (x) = aT

i x− bi , i = 1, . . . ,m. Then, the set of
feasible directions at x is {d ∈ ℜn | aT

i d ≤ 0, i ∈ I(x) }
◮ Necessary optimality conditions

If x∗ ∈ S is a local minimum of f over S then ∇f (x∗)Td ≥ 0
holds for all feasible directions d at x∗

(i.e., at x∗ there are no feasible descent directions)
◮ Necessary and sufficient optimality conditions

Suppose S is non-empty and convex and f convex. Then,
x∗ is a global minimum of f over S

⇔ ∇f (x∗)T(x − x∗) ≥ 0 holds for all x ∈ S

x

xx

x x∗x∗

SS

−∇f (x∗)
−∇f (x∗)
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The Karush-Kuhn-Tucker conditions

Necessary conditions for optimality
Assume that the functions gi : ℜn 7→ ℜ, i = 1, . . . ,m, are convex
and differentiable and that there exists a point x ∈ S such that
gi (x) < 0, i = 1, . . . ,m. Further, assume that f : ℜn 7→ ℜ is
differentiable. If x∗ ∈ S is a local minimum of f over S , then there
exists a vector µ ∈ ℜm such that

∇f (x∗) +

m
∑

i=1

µi∇gi (x
∗) = 0n

µigi (x
∗) = 0, i = 1, . . . ,m

gi (x
∗) ≤ 0, i = 1, . . . ,m

µ ≥ 0m
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Geometry of the Karush-Kuhn-Tucker conditions
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Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions.
At a local minimum, minus the gradient of the objective can be expressed
as a non-negative linear combination of the gradients of the active
constraints at this point.
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The Karush-Kuhn-Tucker conditions

Sufficient conditions under convexity
Assume that the functions f , gi : ℜn 7→ ℜ, i = 1, . . . ,m, are
convex and differentiable. If the conditions

∇f (x∗) +

m
∑

i=1

µi∇gi (x
∗) = 0n

µigi (x
∗) = 0, i = 1, . . . ,m

µ ≥ 0m

hold, then x∗ ∈ S is a global minimum of f over
S = { x ∈ ℜn | gi (x) ≤ 0, i = 1, . . . ,m }.
The Karush-Kuhn-Tucker conditions can also be stated for
optimization problems with equality constraints
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The optimality conditions can be used to

◮ verify an (local) optimal solution

◮ solve certain special cases of nonlinear programs (e.g.
quadratic)

◮ algorithm construction

◮ derive properties of a solution to a non-linear program
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Example

minimize f (x) := 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2

subject to x2
1 + x2

2 ≤ 5
3x1 + x2 ≤ 6

◮ Is x0 = (1, 2)T a Karush-Kuhn-Tucker point?

◮ An optimal solution?

◮ ∇f (x) = (4x1 + 2x2 − 10, 2x1 + 2x2 − 10)T, ∇g1(x) = (2x1, 2x2)
T,

∇g2(x) = (3, 1)T

⇒









4x0
1 + 2x0

2 − 10 + 2x0
1µ1 + 3µ2 = 0

2x0
1 + 2x0

2 − 10 + 2x0
2µ1 + µ2 = 0

µ1((x
0
1 )2 + (x0

2 )2 − 5) = µ2(3x
0
1 + x0

2 − 6) = 0
µ1, µ2 ≥ 0









⇔









2µ1 + 3µ2 = 2
4µ1 + µ2 = 4

0µ1 = −µ2 = 0
µ1, µ2 ≥ 0









⇒ µ2 = 0 ⇒ µ1 = 1 ≥ 0
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Example, continued

◮ The Karush-Kuhn-Tucker conditions hold.

◮ Optimal? Check convexity!

◮ ∇2f (x) =

(

4 2
2 2

)

, ∇2g1(x) =

(

2 0
0 2

)

, ∇2g2(x) =

02×2

⇒ f , g1, and g2 are convex ⇒ x0 = (1, 2)T is an optimal
solution f (x0) = −20
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