
MVE165/MMG630, Applied Optimization
Lecture 12

Unconstrained non-linear programming
algorithms and the KKT conditions

Peter Lindroth

2009–04–24

Lecture 12 Applied Optimization



Contents, lectures 11–13

11 Unconstrained nonlinear programming models, Ch. 13.1

Conditions for local optima, Ch. 13.3

Convexity and conditions for global optima, Ch. 13.4

Improving search, local and global optima, Ch. 3.1

Improving search and feasible directions, Ch. 3.2–3.3

Convexity is tractable, Ch. 3.4

12 One-dimensional search, Ch. 13.2

Gradient search, Ch. 13.5

Newtons method, Ch. 13.6

Karush–Kuhn–Tucker optimality conditions, Ch. 14.4

13 Constrained nonlinear programming models, Ch. 14.1

Special nonlinear programming models, Ch. 14.2

Lagrange multiplier methods, Ch. 14.3

Penalty and barrier methods, Ch. 14.5

Reduced gradient algorithms, Ch. 14.6

Quadratic programming methods, Ch. 14.7

Lecture 12 Applied Optimization



Solution methods for unconstrained optimization

◮ General iterative search method:

1. Choose a starting solution, x0 ∈ ℜn. Let k = 0
2. Determine a seach direction dk

3. Determine a step length, tk , by solving:

min
t≥0

ϕ(t) := f (xk + t · dk)

4. New iteration point, xk+1 = xk + tk · dk

5. If a termination criterion is fulfilled ⇒ Stop!
Otherwise: let k := k + 1 and return to step 2

◮ How choosing the search direction dk , the step length tk , and
the termination criterion?
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Search direction

◮ Goal: f (xk+1) < f (xk)

◮ How does f change locally in a direction dk at xk?

◮ Taylor expansion: f (xk + tdk) = f (xk) + t∇f (xk)Tdk +O(t2)

◮ For sufficiently small t > 0:
∇f (xk)Tdk < 0 ⇒ f (xk + tdk) < f (xk)

⇒ Definition:
If ∇f (xk)Tdk < 0 then dk is a descent direction for f at xk

If ∇f (xk)Tdk > 0 then dk is an ascent direction for f at xk

◮ We wish to minimize (maximize) f over ℜn:

⇒ Choose dk as a descent (an ascent) direction from xk
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An improving step
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Figur: At xk , the descent direction dk is generated. A step tk is taken in
this direction, producing xk+1. At this point, a new descent direction
dk+1 is generated, and so on.
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Step length—line search (minimization)

◮ Solve mint≥0 ϕ(t) := f (xk + t · dk) where dk is a descent
direction from xk

◮ A minimization problem in one variable

⇒ Solution tk

◮ Analytic solution: ϕ′(tk) = 0

◮ Solution methods: e.g., Golden section method (reduce the
interval of uncertainty, Chapter 13.2), Armijo’s method (not
in the book)

◮ In practice: Do not solve exactly, but to sufficient
improvement of the function value: f (xk + tkd

k) ≤ f (xk) − ε

for some ε > 0
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Line search
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Figur: A line search in a descent direction.
tk solves mint≥0 ϕ(t) := f (xk + t · dk)
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Line search—the Golden section method

Based on narrowing down the interval in which t∗ can lie

1. Let tℓb be a lower bound on t∗ (e.g. = 0)

and tub be an upper bound on t∗

2. Choose t1 = tub − α(tub − tℓb), t2 = tℓb + α(tub − tℓb)

where α ≈ 0.618 (the (inverted) golden ratio)

3. Evaluate ϕ(t1), ϕ(t2) and replace tℓb or tub with t1 or t2

4. Terminate or return to 2.

⇒ whichever of [tℓb, t2] or [t1, tub] provides the next interval, its
size will be α times the current

t
t1

t1

t2
t2

tℓb
tℓb

tub
tub

ϕ(t)

k = 0
k = 1 ϕ(t1) > ϕ(t2) ⇒
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Termination criteria

◮ Needed since ∇f (xk) = 0 will never be fulfilled exactly

◮ Typical choices, where εj > 0, j = 1, . . . , 4

(a) ‖∇f (xk)‖ < ε1

(b) |f (xk+1) − f (xk)| < ε2

(c) ‖xk+1 − xk‖ < ε3

◮ Often used in combination

◮ The search method only guarantees a stationary solution,
whose character is determined by the properties of f

(convexity, ...)
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Common special cases of search methods - SD

◮ Steepest ascent (descent) (or Gradient search)
Let the search direction be (minus) the gradient:

dk = +/–∇f (xk) (max/min)

Pros:

◮ Requires only gradient information
◮ Not so computationally demanding per iteration

Cons:

◮ (Very) Slow convergence towards a stationary point
◮ Each direction dk is perpendicular to the previous one dk−1 (if

the line search is solved exactly)—the iterate sequence is
zig-zagging
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Common special cases of search methods - Newton

◮ Newton’s method: Make use of second derivative
information (curvature). Requires that f is twice continuously
differentiable.

◮ Taylor expansion of f around x:
ϕx(d) := f (x) + ∇f (x)Td + 1

2d
T∇2f (x)d (≈ f (x + d))

◮ We wish to find a direction d ∈ ℜn such that
∇dϕx(d) = ∇f (x) + ∇2f (x)d = ∇f (x) + Hf (x)d = 0n

(a stationary point for ϕx) ⇒ dk = −Hf (x
k)−1∇f (xk)

◮ Observe that line search not needed, t = 1 (unit step)
◮ Only look for stationary points ⇒ dk the same for min/max

problems
◮ If f is quadratic (i.e., f (x) = a + cTx + 1

2x
TQx), then Newtons

method finds a stationary point in one iteration. Verify this!
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Common special cases of search methods - Newton

Pros:

◮ Fast convergence

Cons:

◮ Convergens towards a stationary point only guaranteed if
starting “sufficiently close” to one (If f is convex around the
starting point x (i.e., Hf (x) positive definite), then Newtons
method converges towards a local minimum)

◮ Newton does not distinguish between different types of
stationary points

◮ Requires more computations per iteration (matrix inversions)

◮ Does not always work (if det(Hf (x
k)) = 0)
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Common special cases of search methods - Newton

Practical adjustments of Newton’s method:

◮ Start using steepest ascent, then change to Newton

◮ Use dk = −Qk∇f (xk), where Qk ≈ Hf (x
k)−1 and Qk

positive (negative) definite (Quasi-Newton)

◮ Efficient updates of the inverse should be used

◮ Let Qk =
(

Hf (x
k)+/–Ek

)−1
such that Qk becomes

positive/negative definite, e.g., Ek = γI (which shifts all the
eigenvalues by +/–γ. This is called the Levenberg-Marquardt

modification)

Note: for large values of γ, this makes dk resemble the
steepest descent direction
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Optimization over convex sets

Up to now, we have looked at unconstrained optimization. Now:
minimize f (x) subject to x ∈ S

where S = { x ∈ ℜn | gi (x) ≤ 0, i = 1, . . . ,m } is a convex set

◮ Definition Feasible direction

If x ∈ S , then d ∈ ℜn is a feasible direction from x if a small
step in this direction does not lead outside the set S

Formally: d defines a feasible direction at x ∈ S if

∃δ > 0 such that x + td ∈ S for all t ∈ [0, δ]

◮ Definition Active constraints

The active constraints at x ∈ S are those that are fulfilled
with equality, i.e., I(x) = { i = 1, . . . ,m | gi (x) = 0 }

◮ Draw!!

Lecture 12 Applied Optimization



Optimality conditions

◮ Definition Feasible directions for linear

constraints

Suppose that gi (x) = aT

i x− bi , i = 1, . . . ,m. Then, the set of
feasible directions at x is {d ∈ ℜn | aT

i d ≤ 0, i ∈ I(x) }
◮ Necessary optimality conditions

If x∗ ∈ S is a local minimum of f over S then ∇f (x∗)Td ≥ 0
holds for all feasible directions d at x∗

(i.e., at x∗ there are no feasible descent directions)
◮ Necessary and sufficient optimality conditions

Suppose S is non-empty and convex and f convex. Then,
x∗ is a global minimum of f over S

⇔ ∇f (x∗)T(x − x∗) ≥ 0 holds for all x ∈ S

x

xx

x x∗x∗

SS

−∇f (x∗)
−∇f (x∗)
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The Karush-Kuhn-Tucker conditions

Necessary conditions for optimality
Assume that the functions gi : ℜn 7→ ℜ, i = 1, . . . ,m, are convex
and differentiable and that there exists a point x ∈ S such that
gi (x) < 0, i = 1, . . . ,m. Further, assume that f : ℜn 7→ ℜ is
differentiable. If x∗ ∈ S is a local minimum of f over S , then there
exists a vector µ ∈ ℜm such that

∇f (x∗) +

m
∑

i=1

µi∇gi (x
∗) = 0n

µigi (x
∗) = 0, i = 1, . . . ,m

gi (x
∗) ≤ 0, i = 1, . . . ,m

µ ≥ 0m
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Geometry of the Karush-Kuhn-Tucker conditions
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Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions.
At a local minimum, minus the gradient of the objective can be expressed
as a non-negative linear combination of the gradients of the active
constraints at this point.
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The Karush-Kuhn-Tucker conditions

Sufficient conditions under convexity
Assume that the functions f , gi : ℜn 7→ ℜ, i = 1, . . . ,m, are
convex and differentiable. If the conditions

∇f (x∗) +

m
∑

i=1

µi∇gi (x
∗) = 0n

µigi (x
∗) = 0, i = 1, . . . ,m

µ ≥ 0m

hold, then x∗ ∈ S is a global minimum of f over
S = { x ∈ ℜn | gi (x) ≤ 0, i = 1, . . . ,m }.
The Karush-Kuhn-Tucker conditions can also be stated for
optimization problems with equality constraints
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The optimality conditions can be used to

◮ verify an (local) optimal solution

◮ solve certain special cases of nonlinear programs (e.g.
quadratic)

◮ algorithm construction

◮ derive properties of a solution to a non-linear program
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Example

minimize f (x) := 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2

subject to x2
1 + x2

2 ≤ 5
3x1 + x2 ≤ 6

◮ Is x0 = (1, 2)T a Karush-Kuhn-Tucker point?

◮ An optimal solution?

◮ ∇f (x) = (4x1 + 2x2 − 10, 2x1 + 2x2 − 10)T, ∇g1(x) = (2x1, 2x2)
T,

∇g2(x) = (3, 1)T

⇒









4x0
1 + 2x0

2 − 10 + 2x0
1µ1 + 3µ2 = 0

2x0
1 + 2x0

2 − 10 + 2x0
2µ1 + µ2 = 0

µ1((x
0
1 )2 + (x0

2 )2 − 5) = µ2(3x
0
1 + x0

2 − 6) = 0
µ1, µ2 ≥ 0









⇔









2µ1 + 3µ2 = 2
4µ1 + µ2 = 4

0µ1 = −µ2 = 0
µ1, µ2 ≥ 0









⇒ µ2 = 0 ⇒ µ1 = 1 ≥ 0
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Example, continued

◮ The Karush-Kuhn-Tucker conditions hold.

◮ Optimal? Check convexity!

◮ ∇2f (x) =

(

4 2
2 2

)

, ∇2g1(x) =

(

2 0
0 2

)

, ∇2g2(x) =

02×2

⇒ f , g1, and g2 are convex ⇒ x0 = (1, 2)T is an optimal
solution f (x0) = −20
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