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Constrained nonlinear programming models, |

» The general model can be expressed as

minimize yexn  f(X)
subject to  gi(x) < b;, €L,
gi(x)=b;, i€Cf.

» Convex program:
f convex, g convex,i € L, gi(x) = a,-Tx,i €&

» Any local optimum is a global optimum

» Separable program:
F(x) = 21 filx), &i(x) = 2071 gij(xj), i € LUE
» Separable convex nonlinear programs can be solved using linear

programming through piece-wise approximations of the
objective and the constraint functions
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Constrained nonlinear programming models, 11

> Quadratlc program:
f(x) = c¢Tx + 3xTQx, gi(x) = afx,i € LUE
» The KKT conditions lead to a linear system of inequalities +
complementarity

» Posynomial geometric program:
F(x)= 4 de(TTj1 () ) and

g(x) ="K 1c,k(Hj (% )w) where dy, cix > 0 and
agj, b €N, k=1,....,K,j=1,....n, i€ LUE

= A posynomial geometric program:

minimize f(x)
subject to g(x) <1, i=1,...,m,
x>0

» Replace original variables x; by zj = Inx; (or X = e%)
= A convex program (since g(h) is convex if g is convex and
non-decreasing, and h is convex; see Rule 13.31 in Rardin)
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Solution methods for constrained nonlinear

programs |: Lagrange multiplier methods

» Consider only equality constraints:
minimize yegn  f(X) (1)
subject to  gi(x) =b;, €.
» The associated Lagrangian function:
L(x,v) = f(x) +ZVI i — &i(x))
i€

where v; is a multiplier for constraint /
» Stationary points for the Lagrangian function (saddle point):

Vik(x,v) =0" — Vf(x) = Zies viVgi(x)
VL,(x,v) = 0 gi(x) = b, i€
» If (x*,v*) is a stationary point for L(x,v) and x* is an
unconstrained optimum of L(x,v*), then x* is optimal in (1)
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Lagrange multiplier procedure

1. Solve for x:
Vil(x,v) =0 <= Vf(x) =Y ;¢ viVagi(x)
= x =s(v) (for some function s)
2. Then, solve for v:
Vil(x,v) =0 <= V,L(s(v),v) =0
<~ gi(s(v))=bi, i€ = v*
3. x* =s(v*)

» The function s may not be possible to express analytically

» The optimal value of the Lagrange multiplier, v/, can be
interpreted as the change in optimal value per unit increase of
the right-hand side b; (cf. shadow price for linear programs)
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Lagrange multiplier procedure: An example

S 1
minimize ycq3  f(x) 1= §x12 + X3 4 2x3 + x1x0 — x1X3

subject to  g1(x) :=3x1 +4xx =11
&(x)=x+x3=3
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Lagrange multiplier procedure: An example, cont’d

1
minimize ycqs  f(X) 1= §x12 + X3 4 2x3 + x1x0 — x1x3
subject to  g1(x) :=3x3 +4x, =11
&(x) =x+x3=3
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Penalty methods

» Consider both inequality and equality constraints:

minimize yexn  7(X)
subject to  gi(x) < b;, €L, (2)
gi(x)=bj, i€€.

» Drop the constraints and add terms in the objective that
penalize infeasibile solutions

minimizexegn Fu(x) := f(x) + p Z pi(x) (3)
ieLUE

where & > 0 and pi(x) = { =0 ifx sat.isfies constraint i
>0 otherwise

» Common penalty functions:

i€ L: pi(x) =max{0,gi(x) — b} or pi(x)=(max{0,gi(x)— b;i})?

ie&: pi(x)=lgi(x) —bi| or pi(x)=lgi(x) - bil
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More about penalty methods

» If an optimal solution x* to the unconstrained penalty problem
(3) is feasible in the original problem (2), it is optimal in (2)

» If the function g; is differentiable, then the corresponding
squared penalty function is also differentiable

» However, squared penalty functions are usually not exact:
Often no value of 1 > 0 exists such that an optimal solution
for (3) is optimal for the program (2)

» The non-squared penalties are exact: There exists a finite

value of 1 > 0 such that an optimal solution for (3) is optimal
for the program (2)
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Squared and non-squared penalty functions

minimize x> — 20 In x subject to x > 5
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Figur: Squared and non-squared penalty function. g; differentiable —=-
squared penalty function differentiable
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More about penalty methods (squared)

» In practice: Start with a low value of g > 0 and increase the
value as the computations proceed

» Example: minimize x> — 20 In x subject to x > 5 (%)

= minimize x> — 20 In x 4+ p(max{0,5 — x})? (%%)

25

20

Figur: Squared penalty function: Ap < oo such that an optimal solution
for (xx) is optimal (feasible) for (x)
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More about penalty methods (non-squared)

» In practice: Start with a low value of g > 0 and increase the
value as the computations proceed

» Example: minimize x> — 20 In x subject to x > 5 (+)

= minimize x> — 20Inx + g max{0,5 — x} (++)

25

20

Figur: Non-squared penalty function: For g > 6 the optimal solution for
(++) is optimal (and feasible) for (+)
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Sequential unconstrained penalty algorithm

1. Choose 119 > 0, a starting solution x°, escalation factor § > 1,
and iteration counter t := 0

2. Solve (3) with g = uq, starting from x! = optimal solution
xt+1

3. If xt*1 is (sufficiently close to) feasible in (2), stop.
Otherwise, enlarge the penalty parameter: p;i1 := Buy, let
t:=t+ 1, and repeat from 2.
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Barrier methods

» Consider only inequality constraints:
minimize ycqn  f(X)
subject to  gi(x) < b;, €L (4)

» Drop the constraints and add terms in the objective that
prevents from approaching the boundary of the feasible set

minimizegegn  Fu(x) := f(x) + p Z qi(x) (5)
iel

where 1 > 0 and gj(x) — 400 as gi(x) — b; (as constraint /
approaches being active)

» Common barrier functions:
> @) = — b~ ()] o @) = 5oirg
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More about barrier methods (logarithmic)

» Choose i1 > 0 and decrease it as the computations proceed
» Example: minimize x? — 20In x subject to x > 5
= minimize x>5 X% —20Inx — pIn(x —5)
50
40 -

305

Figur: Logarithmic barrier function: u € {10,5,2.5,1.25,0.625,0.3125}



More about barrier methods (fractional)

» Choose i1 > 0 and decrease it as the computations proceed
» Example: minimize x? — 20In x subject to x > 5
= minimize x5 x? —20Inx + 5

Figur: Fractional barrier function: u € {10,5,2.5,1.25,0.625}



More about barrier methods (fractional)

» If 4 > 0 and the true optimum lies on the boundary of the
feasible set (i.e., gi(x*) = b; for some i € L) then the
optimum of a barrier function can never equal the true
optimum

» Under mild assumptions, the sequence of unconstrained
barrier optima converges (in the limit) to the true optimum as
p— 0t

Sequential unconstrained barrier algorithm

1. Choose pg > 0, a feasible interior starting solution x° (such
that gi(x°) < bj, i € L), reduction factor 8 < 1, and iteration
counter t ;=0

2. Solve (5) with p = puy, starting from x! = optimal solution
X1

3. If u is sufficiently small, stop. Otherwise, decrease the barrier
parameter: p;11 = But, let t := t + 1, and repeat from 2.
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Quadratic programming (QP)

» Example (quadratic convex objective, linear constraints):

minimize f(x) = —2x3 —6xx + x12 — 2x1x2 + 2x22
subject to x1 + x < 2
- x1 + 2% < 2
xx , x 2> 0
> Generally:

1 )
minimize q 1 x + ExTQx subject to Ax—b <0,—-Ix<0

where

() o=(5 7)1 2)=(3)
(5 9)
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QP: The Karush-Kuhn-Tucker conditions

q + Qx + ATy — IX = 0
Ax < b

—Ix < 0

wAx >0

pT(Ax—b)=2Tx = 0

Slack variables s > 0 of the constraints Ax <b: Ax+s=Db
= The Karush-Kuhn-Tucker constraints reduce to:

Qx + ATp — I = —q
Ax + Is = b
X, s > 0

wisi=Ajx; = O0foralli,j
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QP: The Karush-Kuhn-Tucker conditions

» Convex optimization problem = Karush-Kuhn-Tucker
conditions are sufficient for a global optimum

= A solution (x, &, A, s) that fulfils the Karush-Kuhn-Tucker
conditions is optimal for the quadratic program (QP)

» The system is linear, with variables: x, u, A,s > 0

» Additional conditions: ujs; = A\jx; = 0 for all i,

» Linear programming—Simplex algorithm with restricted basis:
» Either y; = 0 or 5; = 0. Either A; =0 or x; = 0.

= If, e.g., sy is in the basis (s; > 0), p2 may not enter the basis

» Introduce artificial variables where needed and solve a Phase 1
problem

Lecture 13 Applied Optimization



The Phase 1 problem—example

minimize w = a3 +a
subject to  2x; 2x +u1 2 A1 +a; = 2
=2x1 Hxo +ur 2o -2 +a2 = 6
X1 +X2 +51 = 2
—X1 +2X2 +S> = 2
X1, Xo, p1, p2, A1, A2, S, S, a, a > 0

H1S1 = 0, H2S2 = 0, )\1X1 = 0, )\2X2 =0

Find a starting base by reformulating: a1, az, 51,5 =
wW—ar—a=w+2x0+2\ +X—pu1 —p2—8=0
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The Phase 1 problem—reformulated

» Minimize w, subject to:

—w —2xp 2p1  —p2 A+ = 8
2x1 2x  Hur  —p2 A1 +a; = 2

=2x1 Hxo A H2upp =2 +a = 6

X1 —+xo +51 = 2

—X1 +2X2 +57 = 2

X1, X2, M1, M2, A1, A2, S, S, a, a > 0

under the complementarity conditions:
p1S1 = p2s2 = Arxa = Aaxp =0

» Solution to the Phase 1 problem on next page...
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Solution to the Phase 1 problem

basis | w X1 Xo 11 I A1 A2 s1 ) a; a | RHS ]

w -1 0 -2 -2 -1 1 1 0 0 0 0 -8 Xxp in?
EN 0 2 -2 1 -1 -1 0 0 0 1 0 2 A2 =0
a 0 -2 4 1 2 0 -1 0 0 0 1 6 = OK
5 0 1 1 0 0 0 0 1 0 0 0 2 s out
5 0 -1 2 0 0 0 0 0 1 0 0 2

w -1 -1 0 -2 -1 1 1 0 1 0 0 -6 1 in?
a 0 1 0 1 -1 -1 0 0 1 1 0 4 51 basic
ap 0 0 0 1 2 0 -1 0 -2 0 1 2 = no
51 0 3/2 0 0 0 0 0 1 -1/2 0 0 1 X1 in?
X 0 -1/2 1 0 0 0 0 0 1/2 0 0 1 OK, s1 out
w 1 0 0 2 1 1 1 2/3 2/3 0 0 16/3 | pyin?
a1 0 0 0 T T T 0 273 43 1 0 T0/3 | s1=0
ap 0 0 0 1 2 0 -1 0 -2 0 1 2 = OK
x1 0 1 0 0 0 0 0 2/3  -1/3 0 0 2/3 | a out
x 0 0 1 0 0 0 0 1/3 1/3 0 0 4/3

w | 1 0 0 0 3 1 1 2/3___-10/3 0 2 2/3 | s in?
a1 0 0 0 0 3 B T 2/3  10/3 1 1 I3 | =0
w1 0 0 0 1 2 0 -1 0 2 0 1 2 = OK
x1 0 1 0 0 0 0 0 2/3  -1/3 0 0 2/3 | a; out
x 0 0 1 0 0 0 0 1/3 1/3 0 0 4/3

w -1 0 0 0 0 0 0 0 0 1 1 0 optimum
% 0 0 0 0 9/10 -3/10 3/10 -i/5 1 3710 -3/10 | 2/5

w1 0 0 0 1 1/5  -3/5  -2/5  -2/5 0 3/5 2/5 14/5

x1 0 1 0 0 -3/10 -1/10 1/10 3/ 0 1/10  -1/10 | 4/5

x 0 0 1 0 3/10 1/10 -1/10 2/ 0 -1/10 1/10 | 6/5
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Optimal solution to the Phase 1 problem

The optimal solution to the Phase 1 problem is given by:

xf =4/5, x3=26/5

pi =14/5, ps=0 Note that:
AT = 0, A; =0 H1S1 = U282 = A1X1 = )\2X2 =0
s; =0, s;=2/5

The original QP:

minimize f(x) = —2x3 —6xy + X12 — 2x1%0 + 2x22
subject to x1 + x < 2
- x1 + 20 < 2
x , x >0

= f(x*) = -36/5
What if f was not convex (i.e., Q not positive (semi)definite)?
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Graphical illustration
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