MVE165/MMG630, Applied Optimization Lecture 13 Constrained non-linear programming models and algorithms

Ann-Brith Strömberg

2009-04-27

Constrained nonlinear programming models, I

▶ The **general model** can be expressed as

minimize
$$\mathbf{x} \in \Re^n$$
 $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq b_i, \quad i \in \mathcal{L},$ $g_i(\mathbf{x}) = b_i, \quad i \in \mathcal{E}.$

Convex program:

$$f$$
 convex, g_i convex, $i \in \mathcal{L}$, $g_i(\mathbf{x}) = \mathbf{a}_i^{\mathrm{T}}\mathbf{x}, i \in \mathcal{E}$

- Any local optimum is a global optimum
- Separable program:

$$f(\mathbf{x}) = \sum_{j=1}^{n} f_j(\mathbf{x}_j), \ g_i(\mathbf{x}) = \sum_{j=1}^{n} g_{ij}(\mathbf{x}_j), \ i \in \mathcal{L} \cup \mathcal{E}$$

► Separable convex nonlinear programs can be solved using linear programming through piece-wise approximations of the objective and the constraint functions

Constrained nonlinear programming models, II

Quadratic program:

$$f(\mathbf{x}) = \mathbf{c}^{\mathrm{T}}\mathbf{x} + \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{Q}\mathbf{x}, g_i(\mathbf{x}) = \mathbf{a}_i^{\mathrm{T}}\mathbf{x}, i \in \mathcal{L} \cup \mathcal{E}$$

- ► The KKT conditions lead to a linear system of inequalities + complementarity
- Posynomial geometric program:

$$f(\mathbf{x}) = \sum_{k=1}^{K} d_k \left(\prod_{j=1}^{n} (x_j)^{a_{kj}}\right)$$
 and $g_i(\mathbf{x}) = \sum_{k=1}^{K} c_{ik} \left(\prod_{j=1}^{n} (x_j)^{b_{ikj}}\right)$, where $d_k, c_{ik} > 0$ and $a_{kj}, b_{ikj} \in \Re$, $k = 1, \dots, K, j = 1, \dots, n, i \in \mathcal{L} \cup \mathcal{E}$

⇒ A posynomial geometric program:

minimize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \leq 1, \quad i = 1, \dots, m,$
 $\mathbf{x} > \mathbf{0}$

- ▶ Replace original variables x_i by $z_i = \ln x_i$ (or $x_i = e^{z_i}$)
- \Rightarrow A convex program (since g(h) is convex if g is convex and non-decreasing, and h is convex; see Rule 13.31 in Rardin)

Solution methods for constrained nonlinear programs I: Lagrange multiplier methods

Consider only equality constraints:

minimize
$$\mathbf{x} \in \mathbb{R}^n$$
 $f(\mathbf{x})$ (1) subject to $g_i(\mathbf{x}) = b_i$, $i \in \mathcal{E}$.

The associated Lagrangian function:

$$L(\mathbf{x},\mathbf{v}) = f(\mathbf{x}) + \sum_{i \in \mathcal{E}} v_i (b_i - g_i(\mathbf{x}))$$

where v_i is a multiplier for constraint i

Stationary points for the Lagrangian function (saddle point):

$$\begin{bmatrix} \nabla L_{\mathbf{x}}(\mathbf{x}, \mathbf{v}) = \mathbf{0}^{n} \\ \nabla L_{\mathbf{v}}(\mathbf{x}, \mathbf{v}) = \mathbf{0}^{|\mathcal{E}|} \end{bmatrix} \iff \begin{bmatrix} \nabla f(\mathbf{x}) &= \sum_{i \in \mathcal{E}} v_{i} \nabla g_{i}(\mathbf{x}) \\ g_{i}(\mathbf{x}) &= b_{i}, i \in \mathcal{E} \end{bmatrix}$$

▶ If $(\mathbf{x}^*, \mathbf{v}^*)$ is a stationary point for $L(\mathbf{x}, \mathbf{v})$ and \mathbf{x}^* is an unconstrained optimum of $L(\mathbf{x}, \mathbf{v}^*)$, then \mathbf{x}^* is optimal in (1)

Lagrange multiplier procedure

1. Solve for x:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \mathbf{v}) = \mathbf{0} \iff \nabla f(\mathbf{x}) = \sum_{i \in \mathcal{E}} v_i \nabla g_i(\mathbf{x}) \\
\implies \mathbf{x} = \mathbf{s}(\mathbf{v}) \quad \text{(for some function } \mathbf{s})$$

2. Then, solve for v:

$$\nabla_{\mathbf{v}} L(\mathbf{x}, \mathbf{v}) = \mathbf{0} \iff \nabla_{\mathbf{v}} L(\mathbf{s}(\mathbf{v}), \mathbf{v}) = \mathbf{0}$$

$$\iff g_i(\mathbf{s}(\mathbf{v})) = b_i, \quad i \in \mathcal{E} \implies \mathbf{v}^*$$

- 3. $x^* = s(v^*)$
- ▶ The function **s** may not be possible to express analytically
- ▶ The optimal value of the Lagrange multiplier, v_i^* , can be interpreted as the change in optimal value per unit increase of the right-hand side b_i (cf. shadow price for linear programs)

Lagrange multiplier procedure: An example

minimize
$$\mathbf{x} \in \mathbb{R}^3$$
 $f(\mathbf{x}) := \frac{1}{2}x_1^2 + x_2^2 + 2x_3^2 + x_1x_2 - x_1x_3$
subject to $g_1(\mathbf{x}) := 3x_1 + 4x_2 = 11$
 $g_2(\mathbf{x}) := x_2 + x_3 = 3$

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{pmatrix} \mathbf{x}, \quad \nabla g_1(\mathbf{x}) = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}, \quad \nabla g_2(\mathbf{x}) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\nabla f(\mathbf{x}) = v_1 \nabla g_1(\mathbf{x}) + v_2 \nabla g_2(\mathbf{x}) \Leftrightarrow \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3 & 0 \\ 4 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{v}$$

$$\Leftrightarrow \mathbf{x} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 0 \\ 4 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{v} \Leftrightarrow \mathbf{x} = \begin{pmatrix} 4 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{v} =: \mathbf{s}(\mathbf{v})$$

Lagrange multiplier procedure: An example, cont'd

minimize
$$\mathbf{x} \in \mathbb{R}^3$$
 $f(\mathbf{x}) := \frac{1}{2}x_1^2 + x_2^2 + 2x_3^2 + x_1x_2 - x_1x_3$
subject to $g_1(\mathbf{x}) := 3x_1 + 4x_2 = 11$
 $g_2(\mathbf{x}) := x_2 + x_3 = 3$

$$\mathbf{p}_{i}(\mathbf{s}(\mathbf{v})) = b_{i}, i = 1, 2 \iff \begin{pmatrix} 3 & 4 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 11 \\ 3 \end{pmatrix} \\
\iff \mathbf{v}^{*} = \begin{pmatrix} 12 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 11 \\ 3 \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 8 \\ 25 \end{pmatrix} \approx \begin{pmatrix} 0.73 \\ 2.27 \end{pmatrix} \\
\mathbf{x}^{*} = \begin{pmatrix} 4 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{v}^{*} = \frac{1}{11} \begin{pmatrix} 4 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 8 \\ 25 \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 7 \\ 25 \\ 8 \end{pmatrix} \approx \begin{pmatrix} 0.64 \\ 2.27 \\ 0.73 \end{pmatrix}$$

Penalty methods

Consider both inequality and equality constraints:

minimize
$$\mathbf{x} \in \mathbb{R}^n$$
 $f(\mathbf{x})$
subject to $g_i(\mathbf{x}) \leq b_i, \quad i \in \mathcal{L},$ $g_i(\mathbf{x}) = b_i, \quad i \in \mathcal{E}.$ (2)

 Drop the constraints and add terms in the objective that penalize infeasibile solutions

$$\mathsf{minimize}_{\mathbf{x} \in \Re^n} \ F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i \in \mathcal{L} \cup \mathcal{E}} p_i(\mathbf{x}) \tag{3}$$

where
$$\mu > 0$$
 and $p_i(\mathbf{x}) = \begin{cases} = 0 & \text{if } \mathbf{x} \text{ satisfies constraint } i \\ > 0 & \text{otherwise} \end{cases}$

Common penalty functions:

$$i \in \mathcal{L}$$
: $p_i(\mathbf{x}) = \max\{0, g_i(\mathbf{x}) - b_i\}$ or $p_i(\mathbf{x}) = (\max\{0, g_i(\mathbf{x}) - b_i\})^2$
 $i \in \mathcal{E}$: $p_i(\mathbf{x}) = |g_i(\mathbf{x}) - b_i|$ or $p_i(\mathbf{x}) = |g_i(\mathbf{x}) - b_i|^2$

More about penalty methods

- ▶ If an optimal solution **x*** to the unconstrained penalty problem (3) is feasible in the original problem (2), it is optimal in (2)
- ▶ If the function g_i is differentiable, then the corresponding squared penalty function is also differentiable
- Nowever, squared penalty functions are usually not exact: Often no value of $\mu > 0$ exists such that an optimal solution for (3) is optimal for the program (2)
- ▶ The non-squared penalties are exact: There exists a finite value of $\mu > 0$ such that an optimal solution for (3) is optimal for the program (2)

Squared and non-squared penalty functions

minimize $x^2 - 20 \ln x$ subject to $x \ge 5$

Figur: Squared and non-squared penalty function. g_i differentiable \Longrightarrow squared penalty function differentiable

More about penalty methods (squared)

- In practice: Start with a low value of $\mu>0$ and increase the value as the computations proceed
- **Example:** minimize $x^2 20 \ln x$ subject to $x \ge 5$ (*)
- \Rightarrow minimize $x^2 20 \ln x + \mu (\max\{0, 5 x\})^2$ (**

Figur: Squared penalty function: $\not\exists \mu < \infty$ such that an optimal solution for (**) is optimal (feasible) for (*)

More about penalty methods (non-squared)

- In practice: Start with a low value of $\mu>0$ and increase the value as the computations proceed
- ► **Example:** minimize $x^2 20 \ln x$ subject to $x \ge 5$ (+) ⇒ minimize $x^2 - 20 \ln x + \mu \max\{0, 5 - x\}$ (++)

Figur: Non-squared penalty function: For $\mu \ge 6$ the optimal solution for (++) is optimal (and feasible) for (+)

Sequential unconstrained penalty algorithm

- 1. Choose $\mu_0 > 0$, a starting solution \mathbf{x}^0 , escalation factor $\beta > 1$, and iteration counter t := 0
- 2. Solve (3) with $\mu=\mu_t$, starting from $\mathbf{x}^t\Rightarrow$ optimal solution \mathbf{x}^{t+1}
- 3. If \mathbf{x}^{t+1} is (sufficiently close to) feasible in (2), stop. Otherwise, enlarge the penalty parameter: $\mu_{t+1} := \beta \mu_t$, let t := t+1, and repeat from 2.

Barrier methods

Consider only inequality constraints:

minimize
$$\mathbf{x} \in \mathbb{R}^n$$
 $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq b_i, \quad i \in \mathcal{L}.$ (4)

Drop the constraints and add terms in the objective that prevents from approaching the boundary of the feasible set

$$\mathsf{minimize}_{\mathbf{x} \in \Re^n} \ F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i \in \mathcal{L}} q_i(\mathbf{x}) \tag{5}$$

where $\mu > 0$ and $q_i(\mathbf{x}) \to +\infty$ as $g_i(\mathbf{x}) \to b_i$ (as constraint i approaches being active)

Common barrier functions:

$$ightharpoonup q_i(\mathbf{x}) = -\ln[b_i - g_i(\mathbf{x})]$$
 or $q_i(\mathbf{x}) = \frac{1}{b_i - g_i(\mathbf{x})}$

More about barrier methods (logarithmic)

- lacktriangle Choose $\mu>0$ and decrease it as the computations proceed
- **Example:** minimize $x^2 20 \ln x$ subject to $x \ge 5$
- \Rightarrow minimize x>5 $x^2-20 \ln x \mu \ln(x-5)$

Figur: Logarithmic barrier function: $\mu \in \{10, 5, 2.5, 1.25, 0.625, 0.3125\}$

More about barrier methods (fractional)

- lacktriangle Choose $\mu>0$ and decrease it as the computations proceed
- **Example:** minimize $x^2 20 \ln x$ subject to $x \ge 5$
- \Rightarrow minimize $_{x>5}$ $x^2 20 \ln x + \frac{\mu}{x-5}$

Figur: Fractional barrier function: $\mu \in \{10, 5, 2.5, 1.25, 0.625\}$

More about barrier methods (fractional)

- If $\mu>0$ and the true optimum lies on the boundary of the feasible set (i.e., $g_i(\mathbf{x}^*)=b_i$ for some $i\in\mathcal{L}$) then the optimum of a barrier function can never equal the true optimum
- \blacktriangleright Under mild assumptions, the sequence of unconstrained barrier optima converges (in the limit) to the true optimum as $\mu \to 0^+$

Sequential unconstrained barrier algorithm

- 1. Choose $\mu_0 > 0$, a feasible interior starting solution \mathbf{x}^0 (such that $g_i(\mathbf{x}^0) < b_i$, $i \in \mathcal{L}$), reduction factor $\beta < 1$, and iteration counter t := 0
- 2. Solve (5) with $\mu=\mu_t$, starting from $\mathbf{x}^t\Rightarrow$ optimal solution \mathbf{x}^{t+1}
- 3. If μ is sufficiently small, stop. Otherwise, decrease the barrier parameter: $\mu_{t+1} := \beta \mu_t$, let t := t+1, and repeat from 2.

Quadratic programming (QP)

Example (quadratic convex objective, linear constraints):

minimize
$$f(\mathbf{x}) = -2x_1 - 6x_2 + x_1^2 - 2x_1x_2 + 2x_2^2$$

subject to $x_1 + x_2 \le 2$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

▶ Generally:

minimize
$$\mathbf{q}^{\mathrm{T}}\mathbf{x} + \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{Q}\mathbf{x}$$
 subject to $\mathbf{A}\mathbf{x} - \mathbf{b} \leq \mathbf{0}, -\mathbf{I}\mathbf{x} \leq \mathbf{0}$

where
$$\mathbf{q} = \begin{pmatrix} -2 \\ -6 \end{pmatrix}$$
, $\mathbf{Q} = \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix}$, $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

QP: The Karush-Kuhn-Tucker conditions

Slack variables $\mathbf{s} \geq \mathbf{0}$ of the constraints $\mathbf{A}\mathbf{x} \leq \mathbf{b}$: $\mathbf{A}\mathbf{x} + \mathbf{s} = \mathbf{b}$ \Rightarrow The Karush-Kuhn-Tucker constraints reduce to:

QP: The Karush-Kuhn-Tucker conditions

- ► Convex optimization problem ⇒ Karush-Kuhn-Tucker conditions are sufficient for a global optimum
- \Rightarrow A solution (x, μ, λ, s) that fulfils the Karush-Kuhn-Tucker conditions is optimal for the quadratic program (QP)
 - ▶ The system is linear, with variables: $\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}, \mathbf{s} \geq \mathbf{0}$
 - ▶ Additional conditions: $\mu_i s_i = \lambda_j x_j = 0$ for all i, j
 - ▶ Linear programming—Simplex algorithm with *restricted basis*:
 - ▶ Either $\mu_i = 0$ or $s_i = 0$. Either $\lambda_j = 0$ or $x_j = 0$.
- \Rightarrow If, e.g., s_2 is in the basis ($s_2 > 0$), μ_2 may *not* enter the basis
- ► Introduce artificial variables where needed and solve a Phase 1 problem

The Phase 1 problem—example

Find a starting base by reformulating: $a_1, a_2, s_1, s_2 \Rightarrow w - a_1 - a_2 = w + 2x_2 + 2\lambda_1 + \lambda_2 - \mu_1 - \mu_2 - 8 = 0$

The Phase 1 problem—reformulated

Minimize w, subject to:

under the complementarity conditions:

$$\mu_1 s_1 = \mu_2 s_2 = \lambda_1 x_1 = \lambda_2 x_2 = 0$$

Solution to the Phase 1 problem on next page...

Solution to the Phase 1 problem

basis	W	<i>x</i> ₁	<i>x</i> ₂	μ_1	μ_2	λ_1	λ_2	<i>s</i> ₁	s 2	a_1	a ₂	RHS	
W	-1	0	-2	-2	-1	1	1	0	0	0	0	-8	x ₂ in?
a ₁	0	2	-2	1	-1	-1	0	0	0	1	0	2	$\lambda_2 = 0$
a_2	0	-2	4	1	2	0	-1	0	0	0	1	6	\Rightarrow OK
s ₁	0	1	1	0	0	0	0	1	0	0	0	2	s ₂ out
s 2	0	-1	2	0	0	0	0	0	1	0	0	2	
W	-1	-1	0	-2	-1	1	1	0	1	0	0	-6	μ_1 in?
a ₁	0	1	0	1	-1	-1	0	0	1	1	0	4	s ₁ basic
a_2	0	0	0	1	2	0	-1	0	-2	0	1	2	⇒ no
s ₁	0	3/2	0	0	0	0	0	1	-1/2	0	0	1	x_1 in?
x2	0	-1/2	1	0	0	0	0	0	1/2	0	0	1	OK, s_1 out
w	-1	0	0	-2	-1	1	1	2/3	2/3	0	0	-16/3	μ_1 in?
a ₁	0	0	0	1	-1	-1	0	-2/3	4/3	1	0	10/3	$s_1 = 0$
a ₂	0	0	0	1	2	0	-1	0	-2	0	1	2	⇒ OK
x_1	0	1	0	0	0	0	0	2/3	-1/3	0	0	2/3	a ₂ out
<i>x</i> ₂	0	0	1	0	0	0	0	1/3	1/3	0	0	4/3	
W	-1	0	0	0	3	1	-1	2/3	-10/3	0	2	-4/3	s ₂ in?
a ₁	0	0	0	0	-3	-1	1	-2/3	10/3	1	-1	4/3	$\mu_2 = 0$
μ_1	0	0	0	1	2	0	-1	0	-2	0	1	2	\Rightarrow OK
x_1	0	1	0	0	0	0	0	2/3	-1/3	0	0	2/3	a ₁ out
<i>x</i> ₂	0	0	1	0	0	0	0	1/3	1/3	0	0	4/3	
W	-1	0	0	0	0	0	0	0	0	1	1	0	optimum
s 2	0	0	0	0	-9/10	-3/10	3/10	-1/5	1	3/10	-3/10	2/5	
μ_1	0	0	0	1	1/5	-3/5	-2/5	-2/5	0	3/5	2/5	14/5	
x_1	0	1	0	0	-3/10	-1/10	1/10	3/5	0	1/10	-1/10	4/5	
<i>x</i> ₂	0	0	1	0	3/10	1/10	-1/10	2/5	0	-1/10	1/10	6/5	

Optimal solution to the Phase 1 problem

The optimal solution to the Phase 1 problem is given by:

$$\left[\begin{array}{ll} x_1^*=4/5, & x_2^*=6/5\\ \mu_1^*=14/5, & \mu_2^*=0\\ \lambda_1^*=0, & \lambda_2^*=0\\ s_1^*=0, & s_2^*=2/5 \end{array}\right] \qquad \text{Note that:} \\ \mu_1 s_1=\mu_2 s_2=\lambda_1 x_1=\lambda_2 x_2=0$$

The original QP:

minimize
$$f(\mathbf{x}) = -2x_1 - 6x_2 + x_1^2 - 2x_1x_2 + 2x_2^2$$

subject to $x_1 + x_2 \le 2$
 $-x_1 + 2x_2 \le 2$
 $x_1 + x_2 \ge 0$

$$\Rightarrow f(\mathbf{x}^*) = -36/5$$

What if f was not convex (i.e., **Q** not positive (semi)definite)?

Graphical illustration

