Planning of energy efficiency investments in a pulp mill

A stochastic programming model with multiple objectives

Elin Svensson 2009-05-05

Outline of the lecture

- Background
- Optimization model
- Assignment

Background Energy use in Swedish industry

Total energy use in Sweden 2006* (~450 TWh)

Energy use in Swedish industry 2006 (~160 TWh)

Industry

- Transports (internal)
- Residential, service etc.
- International marine bunkers and use for nonenergy purposes

- Pulp and paper industry
- Iron- and steelworks
- Chemical industry
- Mechanical engineering industry
- Others

Based on data from the Swedish Energy Agency

*Excluding nuclear power losses, transmission and distribution losses

Background A pulp and paper mill

Axelsson (2008) Energy Export Opportunities from Kraft Pulp and Paper Mills and Resulting Reductions in Global CO_2 Emissions

Background Difficult decisions

- Not all energy saving measures can be combined --> We have to choose!
- Uncertain future energy market
 - Electricity and fuel prices
 - Emissions charges and taxes
- Several objectives
 - Economy
 - $-CO_2$ emissions
 - Etc

Optimization model

Important features

Mixed-integer programming

- Decision variables:
 - Typically binary

Multistage stochastic programming

- Decision structure:
 - Decisions \rightarrow Realizations \rightarrow Decisions
- Uncertainty modelling:
 - Energy market scenarios with assumed *probability distribution*

Multiobjective programming

- Two objective functions:
 - E[NPV] : The *expected* net present value
 - E[CO₂]: The *expected* CO₂ emissions reductions

Optimization model

Stochastic programming

• Two-stage decision model

- Favours flexible and robust solutions, and solutions hedging against uncertainty
- Multistage models are also possible

 Maximization of the expected value – probability distributions are required

Optimization model

Modelling the future energy market

How would you model future energy prices?

What are the difficulties?

Discuss in small groups

Optimization model

Scenario model

Optimization model

BAU Business As Usual
S1 Sustainability, distant future
S2 Sustainability, near future
S3 Sustainability, very soon

Time for a break?

Optimization model

Evaluating investments

Net present value

NPV =
$$-C_0 + \sum_{t=1}^{T} \frac{C_t}{(1+r)^t}$$

Rule for 1 investment option: Invest if NPV > 0 For several options: Invest in the options which gives the highest NPV

Optimal investment plan = The investment plan with maximum *expected* NPV

maximize
$$E[NPV(x)] := -C_0(x_0) + \sum_{s \in S} p_s \sum_{t=1}^T \frac{C_t(x_0, x_s, \omega_s)}{(1+r)^t}$$

Optimization model

Multiobjective programming

Pareto-optimal solutions One objective cannot be improved without worsening at least one other objective. Also known as non-dominated solutions.

Optimization model Objective functions

The economic objective:

The expected net present value of the investments

$$f_{\text{NPV}} := \sum_{n \in \mathbb{N}} \operatorname{pr}^n \left(\phi(\ell(n)) f_R(\alpha^n, \xi^n) - \psi(\ell(n)) f_C(\hat{x}^n, \hat{y}^n, \delta^n) \right)$$

The CO₂ objective: The expected "net present value" of the emissions reductions

$$f_{\rm CO2} := \sum_{n \in N} {\rm pr}^n \phi(\ell(n)) f_{\rm Em}(\alpha^n, \xi^n)$$

Optimization model

Finding Pareto optimal solutions

How will the Pareto front look like for a MILP problem (like this one)?

Which methods can be used to find the Pareto optimal solutions?

Discuss in small groups

Optimization model Examples of constraints

Active investments

 $x_m^n = x_m^{p(n)} + \hat{x}_m^{p(n)} - \check{x}_m^{p(n)}, \qquad m \in M, \ n \in N \backslash R.$

Steam balances

$$\sum_{u \in U \setminus (Q \cup L)} \rho_{u,\mathrm{MP}}^n \leq \sum_{m \in M} x_m^n s_{m,\mathrm{MP}} + \sum_{u \in Q} \left(\rho_{u,\mathrm{HP}}^n - \rho_{u,\mathrm{MP}}^n \right) h_{u,\mathrm{MP}}, \qquad n \in N$$

Energy conversion

$$\alpha_u^n \le \sum_{p \in P} q_{up} \rho_{up}^n + \gamma_u^n,$$

$$u\in U\backslash L,\ n\in N$$

Assignment - The pulp mill

Assignment

A production increase at the pulp mill

Decision taken to increase the pulp production by 25%. The recovery boiler is a bottleneck.

Assignment

Optimal solution – The optimal investment plan

- Which investments are made and when AMPL: activate
- What capacities of turbines, lignin extraction, etc have been invested in AMPL: size

Assignment Exercises

- 1. Find the economically optimal investment plan => ε_{low}
- 2. Find the investment plan that maximizes the CO₂ emissions reductions => ε_{high}
- 3-4. Construct a Pareto graph and discuss its appearance
- 5-6. Investigate the sensitivity of the solution to variations in various parameters

Before the end of this week
 My office at Heat and Power Technology
 Room 1208, Chemistry building

• After Friday, by e-mail only: elin.svensson@chalmers.se

Good luck!

Finding this interesting?

We are looking for master thesis workers!