Linear functions are convex

» A function f is convex on the set S if, for any elements
x,y € S it holds that
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Intersections of linear (in)equalities are convex sets Global solutions of convex programs

> A set S is convex if, for any elements x,y € S it holds that

ax+(l-—a)yeSforall0<a<1 > Let x* be a local minimizer of a convex function over a

convex set. Then x* is also a global minimizer.
» Examples:

Non-convex sets
Convex sets » Linear functions are convex and polyhedra are convex sets

@ @ = Every local optimum of a linear program is a global optimum
Y » If a linear program has any optimal solutions, at least one

optimal solution is at an extreme point of the feasible set
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A general linear program The simplex method—reformulations

» The lego example:

|_ 2x1  +x < 6 -| |_ 2x1  +x2 +s = 6 -|
min or max CiXy + ...+ CaXn 2x1 +2x < 8 S 0 2x1 +2x +s = 8
|_ X1, X2 > 0 J |_ X1, X2, 51,52 > 0 J
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subject to aj1x1 + ...+ ajinxn {
> s; and sp are called slack variables—they " fill out” the

X; > 0, j=1,....n (positive) distances between the left and right hand sides
» Surplus variable sj3:
X1+X22800 X1+X2—$3:800
=
x,x2 > 0 x1,x2,83 > 0

The standard form and the simplex method for linear The simplex method—reformulations, cont.

programs

» Every linear program can be reformulated such that: L )
» Non-negative right hand side:

» all constraints are expressed as equalities with non-negative
right hand sides and x1 —xp < —23 —x1 + xo
» all variables are non-negative x1,xo >0 <

3 o —Xx1+x0—54 =23
X1, X2 X1, X2, 54 ZO

» Referred to as the standard form .
» Free variables:

» These requirements streamline the simplex method xi+x <10] [ [x+ x3 — x5 <10 xi +x3 — x5 +s5 =10
calculations x3 >0 x1,x21,x22 >0 x1,x21,x22,55 >0

» Commercial solvers can handle also inequality constraints and
“free” variables—the reformulations are automatically taken
care of
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Basic feasible solutions Basic and non-basic variables

C i . f iabl h < basic basic solution non-basic point  feasible?
> Consider m equations of n variables, where m < n variables variables (0, 0)
» Set n — m variables to zero and solve (if possible) the sLs,s 23 6 35 X1, %2 A yes
remaining (m X m) system of equations s, s, —53 43 281 53, % H no
. . . - . . 5 5
> If the solution is unique, it is called a basic solution s, s, % 23 —4g 103 X1, 53 C no
» Such a solution corresponds to an intersection (feasible or sLx, s —67 90 —185 2,22 : no
. f bl f h I . §Rm S1, X2, 53 23 6 37 S, X1 B yes
infeasible) of m yperplanes in . . . oss 23 4L 16 o G ves
> Each extreme point of the feasible set is an intersection of m X2, 9,8 - - - sty x1 - -
hyperplanes with all variable values > 0 x1,x,5 15 5 8 S, 53 D yes
. . . . . 7
» Basic feasible solution < extreme point of the feasible set x1,x2,8 23 2 zﬁn 51 53 F yes
x1,x,83 23 4L —194 51,9 E no

X
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1 5 10 15 20 |25 N :
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Basic feasible solutions, example

» Constraints:

Basic feasible solutions correspond to solutions to the
system of equations that fulfil non-negativity

X1 < 23 (1)
0.067x; + x < 6 (2)
3y + 8x, < 85 (3) _ |- X1 +51 =23 -|
xi,x > 0 X 0.067x; —+Xxo +55 =
» Add slack variables: |_ 3x1 +8x0 +s3 =85 J
X1 +51 =23 (1) s =23
0.067x1 —+Xxp +5 = (2) Alx=x=0= |: 2 53 zgs :|
3 +8x +s3 =85 (3) B:xq=5=0= L, i
' i 8xo +s3 =85 J
D: S3 =S = 0= 0.0672 +3 a 253 }
3x1 +8xp =85
m = 3 [ X1 =23
F: S3 =85 = 0= | o.067x +x; +s; =6 }
3x1 +8xp =85
n—= 5 [ X1 =23
G:xo=5=0= | 006y +5 =6 }
3x1 +s3 =85
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Basic infeasible solutions correspond to solutions to the Basic feasible solutions and the simplex method

system of equations

» The first basic solution can be represented as

—z 4+2x1  +3x =01 (0)
X1 +5s1 =23 | (1)
\||- X1 +51 =23 -| %x1 +xo +s =6 |(2)
0 0.067x  +xo +52 = J 3x;  +8x +s3 =85 (3)
3a +8x +s3 =85 » Marginal values for increasing the non-basic variables x; and
H: xp=53=0= [ 0o6m 4 iy } xp from zero: 2 and 3, resp.
¥ =8 = Choose xo — let xo enter the basis DRrRAW GRAPH!!
[ 5 =2 . . . .
Cxx=s53=0= o2 +5 fg: } » One basic variable (s, sp, or s3) must leave the basis. Which?
| 0 : X 48 =23 » The value of x» can increase until some basic variable reaches
$2=x=0= | oooa vs o5 } the value 0:
- _ — 0 wh
2 5=x1=0= x3 4% ’ =§3} (2)152:6—X220 = x < 6 N SzXO_W6en
o TR (3):53=85-8x >0 = x <103 (snd 23 = 37)
E: =5 =0= | o061 40 —6 } and $3 =
B B0 4s =85 > s, will leave the basis
Basic feasible solutions and the simplex method Change basis through row operations
» Express the m basic variables in terms of the n — m non-basic » Eliminate s, from the basis, let x» enter the basis using row
variables operations:
» Example: Start at x; = xo = 0 = s1, sp, s3 are basic -z +2x3 +3x = 0| (0)
X1 +51 = 23 (1)
X1 +s1 =23 Ex 4x +sp = 6| (2)
Ex +x +52 =6 3 +8x +s3|= 85| (3)
3x1 +8x2 +s3 =85 -z +3x —3s, = 18| (0) —3-(2)
E q ot f q X1 +s51 = 23 (1)—0(2)
> :
xpress si, Sp, and s3 in terms of x; and x fsxl o tsy _ 6| (2)
£ = 37 (3)-8-(2)

|- s1= 23 —X1 -| 15X1 —8sy +s3
Corresponding basic solution: s; = 23, xo = 6, s3 = 37.

53 = 85 —3X1 —8X2

1
S = 6 _EXI — X2
|_ J Nonbasic variables: x; = s, =0

o o i fxisg >0 L he basi
» Express the objective in terms of the non-basic variables: The marginal value of xq is 5 > 0. Let x enter the basis

z = 2x1 + 3x9 = z—2x1 —3x0 =0
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Which should leave? s1, x5, or s3?



Change basis ...

-z —f—%xl —3s = —18 | (0)
X1 +51 = 23 (1)
Exi +x +55 = 6| (2)
i—;xl —8s, +s3| = 371 (3)
» The value of x; can increase until some basic variable reaches

the value 0:

(1):s51=23—x>0 = x <23 _
(2) % =6—2x >0 =x<9 §= 53;0_";2‘3"
(3):s3=37-3x >0 =x<15 e

x1 enters the basis and s3 will leave the basis

Perform row operations:

-z +2.84s, —0.73s3 | = —45 (O)_(3) é_? %
s1 +3.24s, —0.41s3 = 8 (]_)_(3) . %
Xp +1.22sy —0.03s3 | = 5 (2)—(3) . % . 11_5
X1 —3.24s, +0.41s3 | = 15 | (3) %
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Change basis ...

—Z

+2.84S2 —0.7353 = —45 (0)

s1 +3.24s, —0.41s3 | = 8 (1)

X2 +1.22$2 —0.0353 = 5 (2)

X1 —3.24sp +0.41s3 | = 15 (3)

Let s, enter the basis (marginal value > 0)

The value of s can increase until some basic variable = 0:
(1) 151 =8—-3.245 >0 = 5 < 2.47 _
(2 x%=5-1225>0 =s5<410 %= 515__02""27“
(3):x =154+3245 >0 = 55> —4.63 2=
sy enters the basis and s; will leave the basis
Perform row operations:
—z —0.87s1 —0.37s3 | = =52 (0)—(1)- 555
031s; +s; 01253 | = 247 | (1)-55;
xo —0.37s +0.12s3 | = 2 (2-(01) 3%
X1 +s1 = 23 | (3)+(1)
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Optimal basic solution

X1

X2

—0.8751
0.3151
—0.3751
+51

+5>

—0.3753 =
—0.1253 =
+0.12s3 | =

—52
2.47
2

23

vV v v Vv
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No marginal value is positive. No improvement can be made

The optimal basis is given by s = 2.47, xo = 2, and x; = 23

Non-basic variables: s; = s3 =0

Optimal value: z = 52

Summary of the solution course

T T 17X

basis | -z x1  x s S s3 | RHS
-z 1 2 3 0 0 0 0
s1 0 1 0 1 0 0 23
S» 0 0.067 1 0 1 0 6
S3 0 3 8 0 0 1 85
-z 1 180 O 0 -3 0 -18
s 0 1 0 1 0 0 23
X2 0 0.07 1 0 1 0 6
S3 0 247 O 0 -8 1 37
-z 1 0 0 0 2.84 -0.73 -45
s 0 0 0 1 3.24 041 8
X 0 0 1 0 1.22  -0.03 5
X1 0 1 0 0 -3.24 0.41 15
2| 1 0 0 w08 0 -037] 5
s 0 0 0 031 1 -012] 247
X 0 0 1 -0.37 0 0.12 2
X1 0 1 0 1 0 0 23
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Summary of the simplex method Solve the lego problem using the simplex method!

» Optimality condition: The entering variable in a
maximization (minimization) problem should have the largest
positive (negative) marginal value (reduced cost).

The entering variable determines a direction in which the maximize  z = 1600x; 4+ 1000x,

objective value increases (decreases). subject to 2q + x < 6
2x1  + 2xp < 8

If all reduced costs are negative (positive), the current basis is x1, 2 > 0

optimal.

- - . : . : "
» Feasibility condition: The leaving variable is the one with ON THE BOARD
smallest nonnegative ratio.
Corresponds to the constraint that is “reached first”

> If the smallest nonnegative ratio is zero, the value of a basic
1. Initialization: Choose any feasible basis, construct the variable will become zero in the next iteration
corresponding basic solution x0, let t = 0

» The solution is degenerate
. . . . » The objective value will not improve in this iteration
2. Step direction: Select a variable to enter the basis using the _ ) _ p.
optimality condition (negative marginal value). Stop if no » Risk for cycling around (non-optimal) bases
entering variable exists > Reason: a redundant constraint “touches” the feasible set
» Example:
3. Step length: Select a leaving variable using the feasibility
condition (smallest non-negative ratio) xx + x < 6
X2 S 3
4. New iterate: Compute the new basic solution x*1 by x1 4+ 20 < 9
performing matrix operations. x1, xo > 0
Let ¢ :=t+1 and repeat from 2 » Computational rules to prevent from cycling
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Unbounded solutions Starting solution—finding an initial base

» Example:
> If all ratios are negative, the variable entering the basis may
increase infinitely minimize z= 2x; +3x»
subject to 3x1 +2x0 =14
» The feasible set is unbounded 2x1 —b4xy > 2
DRAW GRAPH!! 4x; +3x, <19
x1,x2 >0

> In a real application this would probably be due to some

incorrect assumption .
P » Add slack and surplus variables

» Example: minimize z= —x; —2x minimize z= 2x3 +3x
subject to —x1  t+xp <2 subject to 3x1 +2x =14
-2x1 +x <1 2x1 —4xo —s51 =
x1, xo >0 4x;  +3x +s, =19

X1,X2,51,5p >0
DRAW GRAPH!! et

» How finding an initial basis? Only s, is obvious!
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Unbounded solutions Artificial variables

» Add artificial variables a; and a» to the first and second
constraints, respectively

> A feasible basis is given by x; = 1, x, = 3, with corresponding
tableau: > Solve an artificial problem: minimize a; + a»
Homework: Find this basis using the simplex method. minimize w = a +a
basis | —z x1 x s s | RHS subject to 3x1 +2x +a; =14
—z 1 0 0 5 -3 7 2x; —4xp —s1 +a, = 2
X1 0 1 0 1 -1 1 4x; +3xo +5 =19
x| 0 0 1 2 -1 3 X1,X2,51,52,81,82 >0
» Entering variable is sy » The “phase one” problem
» Rowl:xy=1+5>0= 52> -1 » An initial basis is given by a; = 14, a = 2, and s, = 19:
» Row2: xo =3+ >0= s> -3 basis | —~w x3 x» s S a a» | RHS
» No leaving variable can be found, since no constraint will —w 1 5 2 1 0 0 0 -16
prevent s, from increasing infinitely a1 03 2 0 0 1 0 14
ap 0 2 4 -1 0 0 1 2
S 0 4 3 0 1 0 O 19
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Find an initial solution using artificial variables

> x; enters = ap leaves (then x; = s, then s; = a7)

basis | —w x1  x S1 ) a1 a2 RHS
—w 1 -5 2 1 0 0 0 -16
ai 0 3 2 0 0 1 0 14
az 0 2 -4 -1 0 0 1 2
S 0 4 3 0 1 0 0 19
—-w 1 0 -8 -1.5 0 0 -11
a 0 0 8 1.5 0 1 11
x1 0o 1 -2 -0.5 0 0 1
Sy 0 0 11 2 1 0 15
—w 1 0 0 -0.045 0.727 0 -0.001
a 0 0 0 0.045 -0.727 1 0.0901
X1 0 1 0 -0.136 0.182 0 3.727
X2 0 0 1 0.182 0.091 0 1.364
—w 1 0 0 0 0 0
s1 0 0 0 1 -16 2
X1 0 1 0 0 -2 4
Xo 0 0 1 0 3 1

> A feasible basis is given by x; =4, xo =1, and s =2
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Infeasible linear programs

> If the solution to the “phase one” problem has optimal value
= 0, a feasible basis has been found

= Start optimizing the original objective function z from this

basis (homework)

> If the solution to the “phase one” problem has optimal value

w > 0, no feasible solutions exist

» What would this mean in a real application?

» Alternative: M-method (Big-M method): Add the artificial
variables to the original objective—with a large coefficient

Example:

Lecture 2 Applied Optimization

minimize

minimize

z=2x1 + 3x

z; = 2x1 + 3x0 + Maj; + Ma,

Alternative optimal solutions

» Example:
minimize z = 2x; +4x
subject to x1 +2x» <5
x1  +x <4
DRrRAW GRAPH!! x1,x2 >0

» The extreme points (0, 3) and (3,1) have the same optimal
value z =10

» All solutions that are positive linear (convex) combinations of
these are optimal:

(x1,xz):a-(0,g)+(1—a)-(3,1), 0<a<l

Lecture 2 Applied Optimization



	fo2-publish1.pdf
	fo2-publish2
	fo2-publish3

