MVE165/MMG630, Applied Optimization Lecture 2

Ann-Brith Strömberg

2009-03-17

Lecture 2

Applied Optimization

Convex sets

lacksquare A set S is convex if, for any elements $\mathbf{x},\mathbf{y}\in S$ it holds that

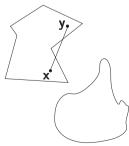
$$\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in S$$
 for all $0 \le \alpha \le 1$

► Examples:

Convex sets

Non-convex sets

4日 → 4回 → 4 三 → 4 三 → 9 Q ○



⇒ Intersections of linear (in)equalities ⇒ convex sets

1 ---- 2

Applied Optimizati

Convex and concave functions

A function f is convex on the set S if, for any elements $\mathbf{x}, \mathbf{y} \in S$ it holds that

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$
 for all $0 \le \alpha \le 1$

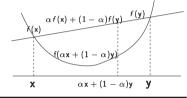
A function f is concave on the set S if, for any elements $\mathbf{x}, \mathbf{y} \in S$ it holds that

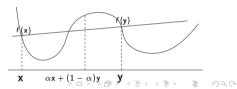
$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$
 for all $0 \le \alpha \le 1$

⇒ Linear functions are convex (and concave)

Convex function

Non-convex function





Lecture 2

Applied Optimization

Global solutions of convex programs

- ► Let **x*** be a *local* minimizer of a *convex function* over a *convex set*. Then **x*** is also a *global* minimizer.
- ⇒ Every local optimum of a linear program is a global optimum
- ▶ If a linear program has any optimal solutions, at least one optimal solution is at an extreme point of the feasible set
- ⇒ Search for optimal extreme point(s)

A general linear program

minimize or maximize $c_1x_1 + \ldots + c_nx_n$

subject to $a_{i1}x_1 + \ldots + a_{in}x_n = \left\{\begin{array}{c} \leq \\ = \\ \geq \end{array}\right\} \quad b_i, \quad i = 1, \ldots, m$

$$x_j = \left\{egin{array}{l} rac{\leq 0}{ ext{unrestricted in sign}} \ \geq 0 \end{array}
ight. , \quad j=1,\ldots,n$$

 $ightharpoonup c_j$, a_{ij} , and b_i are constant parameters for $i=1,\ldots,m$ and $j=1,\ldots,n$

Lecture 2

Applied Optimization

The standard form and the simplex method for linear programs

- ▶ Every linear program can be reformulated such that:
 - ► all constraints are expressed as equalities with non-negative right hand sides
 - ▶ all variables are restricted to be non-negative
- ▶ Referred to as the *standard form*
- ► These requirements streamline the simplex method calculations
- ► Commercial solvers can handle also inequality constraints and unrestricted variables—the reformulations are automatically taken care of

4□ > 4□ > 4 = > 4 = > = 90

► The lego example:

$$\begin{bmatrix} 2x_1 & +x_2 \leq & 6 \\ 2x_1 & +2x_2 \leq & 8 \\ & x_1, x_2 \geq & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x_1 & +x_2 & +s_1 & = & 6 \\ 2x_1 & +2x_2 & +s_2 = & 8 \\ & & x_1, x_2, s_1, s_2 \geq & 0 \end{bmatrix}$$

- ▶ s₁ and s₂ are called *slack variables*—they "fill out" the (positive) distances between the left and right hand sides
- ► Surplus variable s₃:

$$\begin{bmatrix} x_1 & + & x_2 & \geq & 800 \\ & x_1, x_2 & \geq & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 & + & x_2 - & s_3 & = & 800 \\ & & x_1, x_2, s_3 & \geq & 0 \end{bmatrix}$$

4□ > 4團 > 4 분 > 4 분 > 1 분 90

Lecture 2

Applied Optimizatio

The simplex method—reformulations, cont.

▶ Non-negative right hand side:

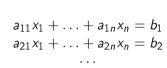
$$\begin{bmatrix} x_1 - x_2 & \le -23 \\ x_1, x_2 & \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 & \ge 23 \\ x_1, x_2 & \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 - s_4 & = 23 \\ x_1, x_2, s_4 & \ge 0 \end{bmatrix}$$

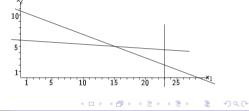
Unrestricted variables:

$$\begin{bmatrix} x_1 + x_2 \le 10 \\ x_1 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 \le 10 \\ x_1, x_2^1, x_2^2 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 + s_5 = 10 \\ x_1, x_2^1, x_2^2, s_5 \ge 0 \end{bmatrix}$$

Basic feasible solutions

- ▶ Consider m equations of n variables, where m < n
- ▶ Set n m variables to zero and solve (if possible) the remaining $(m \times m)$ system of equations
- ▶ If the solution is *unique*, it is called a *basic* solution
- Such a solution corresponds to an intersection (feasible or infeasible) of m hyperplanes in \Re^m
- ▶ Each extreme point of the feasible set is an intersection of m hyperplanes with all variable values ≥ 0
- ▶ Basic feasible solution ⇔ extreme point of the feasible set





 $a_{m1}x_1+\ldots+a_{mn}x_n=b_m$

Applied Optimiza

Lecture 2

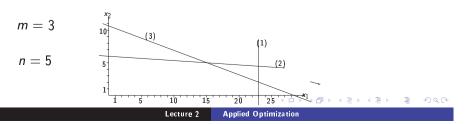
Basic feasible solutions, example

► Constraints:

$$x_1$$
 \leq 23 (1)
 $0.067x_1 + x_2 \leq$ 6 (2)
 $3x_1 + 8x_2 \leq$ 85 (3)
 $x_1, x_2 >$ 0

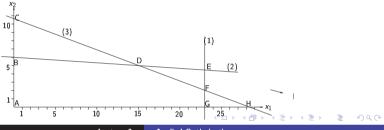
► Add slack variables:

$$x_1$$
 $+s_1$ $= 23$ (1)
 $0.067x_1$ $+x_2$ $+s_2$ $= 6$ (2)
 $3x_1$ $+8x_2$ $+s_3$ $= 85$ (3)
 $x_1, x_2, s_1, s_2, s_3 \ge 0$



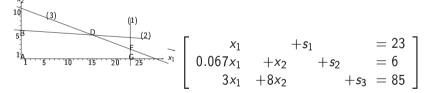
Basic and non-basic variables and solutions

basic	basic solution			non-basic	point	feasible?
variables				variables (0,0)		
s ₁ , s ₂ , s ₃	23	6	85	x_1, x_2	Α	yes
s_1, s_2, x_1	$-5\frac{1}{3}$	$4\frac{1}{9}$	$28\frac{1}{3}$	s ₃ , x ₂	Н	no
s_1, s_2, x_2	23	$-4\frac{5}{8}$	$10\frac{5}{8}$	X1, S3	C	no
s_1, x_1, s_3	-67	90	-185	s_2, x_2		no
s_1, x_2, s_3	23	6	37	s_2, x_1	В	yes
x_1, s_2, s_3	23	$4\frac{7}{15}$	16	s_1, x_2	G	yes
x_2, s_2, s_3	-	-	-	s ₁ , x ₁	-	-
x_1, x_2, s_1	15	5	8	s_2, s_3	D	yes
x_1, x_2, s_2	23	2	$2\frac{7}{15}$	s_1, s_3	F	yes
x_1, x_2, s_3	23	$4\frac{7}{15}$	$-19\frac{11}{15}$	s_1, s_2	Ε	no



Lecture 2 Applied Optimizati

Basic feasible solutions correspond to solutions to the system of equations that fulfil non-negativity



A:
$$x_1 = x_2 = 0 \Rightarrow \begin{bmatrix} s_1 & = 23 \\ s_2 & = 6 \\ s_3 & = 85 \end{bmatrix}$$

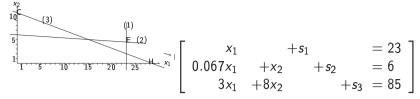
B:
$$x_1 = s_2 = 0 \Rightarrow \begin{bmatrix} s_1 & = 23 \\ s_2 & = 6 \\ s_{x_2} & +s_3 & = 85 \end{bmatrix}$$

D:
$$s_3 = s_2 = 0 \Rightarrow \begin{bmatrix} x_1 & +s_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & = 85 \end{bmatrix}$$

F:
$$s_3 = s_1 = 0 \Rightarrow \begin{bmatrix} x_1 & = 23 \\ 0.067x_1 & +x_2 & +s_2 & = 6 \\ 3x_1 & +8x_2 & = 85 \end{bmatrix}$$

G:
$$x_2 = s_1 = 0 \Rightarrow \begin{bmatrix} x_1 & = 23 \\ 0.067x_1 & +s_2 & = 6 \\ 3x_1 & +s_3 & = 85 \end{bmatrix}$$

Basic **infeasible** solutions correspond to solutions to the system of equations with one or more variables < 0



H:
$$x_2 = s_3 = 0 \Rightarrow \begin{bmatrix} x_1 & +s_1 & = 23 \\ 0.067x_1 & +s_2 & = 6 \\ 3x_1 & = 85 \end{bmatrix}$$

C:
$$x_1 = s_3 = 0 \Rightarrow \begin{bmatrix} s_1 & = 23 \\ s_2 & +s_2 & = 6 \\ s_2 & = 85 \end{bmatrix}$$

-:
$$s_1 = x_1 = 0 \Rightarrow \begin{bmatrix} x_2 & 0 & = 23 \\ x_2 & +s_2 & = 6 \\ 8x_2 & +s_2 & = 85 \end{bmatrix}$$

E:
$$s_1 = s_2 = 0 \Rightarrow \begin{bmatrix} x_1 & = 23 \\ 0.067x_1 & +x_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{bmatrix}$$

Lecture 2

Applied Optimization

Basic feasible solutions and the simplex method

- ightharpoonup Express the *m basic* variables in terms of the *n m non-basic* variables
- ▶ Example: Start at $x_1 = x_2 = 0 \Rightarrow s_1$, s_2 , s_3 are basic

$$\begin{bmatrix} x_1 & +s_1 & = 23 \\ \frac{1}{15}x_1 & +x_2 & +s_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{bmatrix}$$

 \blacktriangleright Express s_1 , s_2 , and s_3 in terms of x_1 and x_2 :

$$\begin{bmatrix} s_1 = 23 & -x_1 \\ s_2 = 6 & -\frac{1}{15}x_1 & -x_2 \\ s_3 = 85 & -3x_1 & -8x_2 \end{bmatrix}$$

Express the objective in terms of the *non-basic* variables:

$$z = 2x_1 + 3x_2 \qquad \Leftrightarrow \qquad z - 2x_1 - 3x_2 = 0$$

Basic feasible solutions and the simplex method

► The first basic solution can be represented as

- Marginal values for increasing the non-basic variables x_1 and x_2 from zero: 2 and 3, resp.
- \Rightarrow Choose x_2 let x_2 enter the basis

Draw Graph!!

- ▶ One basic variable $(s_1, s_2, \text{ or } s_3)$ must leave the basis. Which?
- ▶ The value of x_2 can increase until some basic variable reaches the value 0:

(2):
$$s_2 = 6 - x_2 \ge 0$$
 $\Rightarrow x_2 \le 6$
(3): $s_3 = 85 - 8x_2 \ge 0$ $\Rightarrow x_2 \le 10\frac{5}{8}$ $\Rightarrow x_2 = 0$ when $x_2 = 6$ (and $x_3 = 37$)

 \triangleright s_2 will leave the basis

Lecture 2

Applied Optimizatio

Change basis through row operations

▶ Eliminate s_2 from the basis, let x_2 enter the basis using row operations:

-z	$+2x_{1}$	$+3x_{2}$				=	0	(0)
	x_1		$+s_1$			=	23	(1)
	$\frac{1}{15}x_1$	$+x_2$		$+s_2$		=	6	(2)
	$3x_1$	$+8x_{2}$			$+s_3$	=	85	(3)
$\overline{-z}$	$+\frac{9}{5}x_1$			$-3s_{2}$		=	-18	$(0) -3\cdot(2)$
	x_1		$+s_1$			=	23	$(1)-0\cdot(2)$
	$\frac{1}{15} x_1$	$+x_2$		$+s_2$		=	6	(2)
	$\frac{\frac{1}{15}X_1}{\frac{37}{15}X_1}$			$-8s_{2}$	$+s_3$	=	37	$(3)-8\cdot(2)$

- ▶ Corresponding basic solution: $s_1 = 23$, $x_2 = 6$, $s_3 = 37$.
- Nonbasic variables: $x_1 = s_2 = 0$
- ▶ The marginal value of x_1 is $\frac{9}{5} > 0$. Let x_1 enter the basis
- ▶ Which should leave? s_1 , x_2 , or s_3 ?

Change basis ...

 \blacktriangleright The value of x_1 can increase until some basic variable reaches the value 0:

$$\begin{array}{lll} (1): s_1 = 23 - x_1 \geq 0 & \Rightarrow x_1 \leq 23 \\ (2): x_2 = 6 - \frac{1}{15}x_1 \geq 0 & \Rightarrow x_1 \leq 90 \\ (3): s_3 = 37 - \frac{37}{15}x_1 \geq 0 & \Rightarrow x_1 \leq 15 \end{array} \right\} \Rightarrow \begin{array}{ll} s_3 = 0 \text{ when} \\ x_1 = 15 \end{array}$$

- \triangleright x_1 enters the basis and s_3 will leave the basis
- ▶ Perform row operations:

-z			$+2.84s_2$	$-0.73s_3$	=	-45	$(0)-(3)\cdot\frac{15}{37}\cdot\frac{9}{5}$
		s_1	$+3.24s_2$	$-0.41s_{3}$	=	8	$(1)-(3)\cdot\frac{15}{37}$
	<i>x</i> ₂		$+1.22s_2$	$-0.03s_3$	=	5	$(2)-(3)\cdot\frac{15}{37}\cdot\frac{1}{15}$
x_1			$-3.24s_2$	$+0.41s_{3}$	=	15	$\begin{array}{c} (0) - (3) \cdot \frac{15}{37} \cdot \frac{9}{5} \\ (1) - (3) \cdot \frac{15}{37} \\ (2) - (3) \cdot \frac{15}{37} \cdot \frac{1}{15} \\ (3) \cdot \frac{15}{37} \end{array}$

Change basis ...

-z				$+2.84s_2$	$-0.73s_3$	=	-45	
			s_1	$+3.24s_2$	$-0.41s_{3}$	=	8	(1)
		<i>x</i> ₂		$+1.22s_2$	$-0.03s_3$	=	5	(2)
	<i>x</i> ₁			$-3.24s_2$	$+0.41s_{3}$	=	15	(1) (2) (3)

- ▶ Let s_2 enter the basis (marginal value > 0)
- ▶ The value of s_2 can increase until some basic variable = 0:

$$\begin{array}{lll} (1): s_1 = 8 - 3.24 s_2 \geq 0 & \Rightarrow s_2 \leq 2.47 \\ (2): x_2 = 5 - 1.22 s_2 \geq 0 & \Rightarrow s_2 \leq 4.10 \\ (3): x_1 = 15 + 3.24 s_2 \geq 0 & \Rightarrow s_2 \geq -4.63 \end{array} \right\} \Rightarrow \begin{array}{ll} s_1 = 0 \text{ when} \\ s_2 = 2.47 \end{array}$$

- \triangleright s_2 enters the basis and s_1 will leave the basis
- ► Perform row operations:

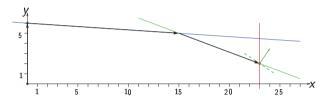
			, p 0. a 0. 0 0 .					
-z			$-0.87 s_1$		$-0.37s_{3}$	=	-52	$(0)-(1)\cdot\frac{2.84}{3.24}$
			$0.31s_{1}$	$+s_2$	$-0.12s_3$	=	2.47	$(1) \cdot \frac{1}{3.24}$
		<i>x</i> ₂	$-0.37 s_1$		$+0.12s_3$	=	2	$(2)-(1)\cdot\frac{1.22}{3.24}$
	x_1		$+s_1$			=	23	$\begin{array}{c} (0) - (1) \cdot \frac{2.84}{3.24} \\ (1) \cdot \frac{1}{3.24} \\ (2) - (1) \cdot \frac{1.22}{3.24} \\ (3) + (1) \end{array}$

◆ロ > ← 個 > ← 差 > ← 差 → 一差 の へ ()

Optimal basic solution

$\overline{-z}$		$-0.87s_1$		$-0.37s_3$		-52
		$0.31s_{1}$	$+s_2$	$-0.12s_{3}$	=	2.47
	<i>x</i> ₂	$-0.37s_1$		$-0.37s_3$ $-0.12s_3$ $+0.12s_3$	=	2
x_1		$+s_1$			=	23

- ▶ No marginal value is positive. No improvement can be made
- ▶ The optimal basis is given by $s_2 = 2.47$, $x_2 = 2$, and $x_1 = 23$
- Non-basic variables: $s_1 = s_3 = 0$
- ▶ Optimal value: z = 52



4日 → 4部 → 4 注 → 4 注 → 9 9 (*)

Lecture 2

Applied Optimization

Summary of the solution course

basis	-z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>5</i> ₃	RHS
-z	1	2	3	0	0	0	0
s_1	0	1	0	1	0	0	23
<i>s</i> ₂	0	0.067	1	0	1	0	6
<i>s</i> ₃	0	3	8	0	0	1	85
-z	1	1.80	0	0	-3	0	-18
s_1	0	1	0	1	0	0	23
<i>x</i> ₂	0	0.07	1	0	1	0	6
53	0	2.47	0	0	-8	1	37
-z	1	0	0	0	2.84	-0.73	-45
s_1	0	0	0	1	3.24	-0.41	8
<i>x</i> ₂	0	0	1	0	1.22	-0.03	5
<i>x</i> ₁	0	1	0	0	-3.24	0.41	15
-z	1	0	0	-0.87	0	-0.37	-52
<i>s</i> ₂	0	0	0	0.31	1	-0.12	2.47
<i>x</i> ₂	0	0	1	-0.37	0	0.12	2
<i>x</i> ₁	0	1	0	1	0	0	23

Summary of the simplex method

▶ **Optimality condition**: The *entering* variable in a maximization (minimization) problem should have the largest positive (negative) marginal value (reduced cost).

The entering variable determines a direction in which the objective value increases (decreases).

If all reduced costs are negative (positive), the current basis is optimal.

► **Feasibility condition**: The *leaving* variable is the one with smallest nonnegative ratio.

Corresponds to the constraint that is "reached first"

Lecture 2

Applied Optimization

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 り 9 ○ ○

4□ > 4□ > 4□ > 4□ > 4□ > 900

Simplex search for linear (minimization) programs (p. 204)

- 1. **Initialization:** Choose any feasible basis, construct the corresponding basic solution \mathbf{x}^0 , let t=0
- 2. **Step direction:** Select a variable to enter the basis using the optimality condition (negative marginal value). Stop if no entering variable exists
- 3. **Step length:** Select a leaving variable using the feasibility condition (smallest non-negative ratio)
- 4. **New iterate:** Compute the new basic solution \mathbf{x}^{t+1} by performing matrix operations.
- 5. Let t := t + 1 and repeat from 2

Solve the lego problem using the simplex method!

maximize
$$z=1600x_1+1000x_2$$
 subject to $2x_1+x_2 \leq 6$ $2x_1+2x_2 \leq 8$ $x_1, x_2 \geq 0$

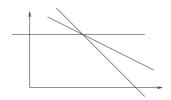
Homework!!

Lecture 2

Applied Optimizat

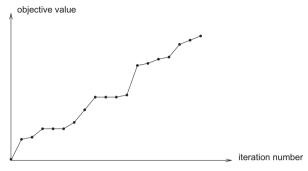
Degeneracy (Ch. 5.6)

- ▶ If the smallest nonnegative ratio is zero, the value of a basic variable will become zero in the next iteration
- ▶ The solution is *degenerate*
- ▶ The objective value will *not* improve in this iteration
- ▶ Risk: cycling around (non-optimal) bases
- ▶ Reason: a redundant constraint "touches" the feasible set
- ► Example:



Degeneracy

▶ Typical objective function progress of the simplex method



- ► Computational rules to prevent from infinite cycling: careful choices of leaving and entering variables
- ▶ In modern software: perturb the right hand side $(b_i + \Delta b_i)$, solve, reduce the perturbation and resolve from the current basis. Repeat until $\Delta b_i = 0$.

Lecture 2 Applied Optimization

Unbounded solutions

- ▶ If all ratios are negative, the variable entering the basis may increase infinitely
- ▶ The feasible set is unbounded
- ▶ In a real application this would probably be due to some incorrect assumption
- ► Example: minimize $z = -x_1 - 2x_2$ subject to $-x_1 + x_2 \le 2$ $-2x_1 + x_2 \le 1$ $x_1, x_2 \geq 0$

DRAW GRAPH!!

<ロ > < 回 > < 回 > < 巨 > < 巨 > 豆 り < ⊙ > < ⊙ > ○

Unbounded solutions

 \triangleright A feasible basis is given by $x_1 = 1$, $x_2 = 3$, with corresponding tableau:

Homework: Find this basis using the simplex method.

basis	-z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	RHS
z	1	0	0	5	-3	7
<i>x</i> ₁	0	1	0	1	-1	1
<i>x</i> ₂	0	0	1	2	-1	3

- \triangleright Entering variable is s_2
- Row 1: $x_1 = 1 + s_2 > 0 \Rightarrow s_2 > -1$
- Row 2: $x_2 = 3 + s_2 \ge 0 \Rightarrow s_2 \ge -3$
- ▶ No leaving variable can be found, since no constraint will prevent so from increasing infinitely

4□ > 4□ > 4 = > 4 = > = 90

Lecture 2

Starting solution—finding an initial basis (Ch. 5.5, p. 211)

► Example:

minimize
$$z = 2x_1 + 3x_2$$
 subject to $3x_1 + 2x_2 = 14$ $2x_1 - 4x_2 \ge 2$ Draw Graph!! $4x_1 + 3x_2 \le 19$ $x_1, x_2 > 0$

► Add slack and surplus variables

minimize
$$z=2x_1+3x_2$$
 subject to
$$3x_1+2x_2=14$$

$$2x_1-4x_2-s_1=2$$

$$4x_1+3x_2+s_2=19$$

$$x_1,x_2,s_1,s_2\geq 0$$

▶ How finding an initial basis? Only s₂ is obvious!

Artificial variables

- ► Add artificial variables a_1 and a_2 to the first and second constraints, respectively
- ▶ Solve an artificial problem: minimize $a_1 + a_2$

minimize
$$w=$$
 $a_1 + a_2$ subject to $3x_1 + 2x_2 + a_1 = 14$ $2x_1 - 4x_2 - s_1 + a_2 = 2$ $4x_1 + 3x_2 + s_2 = 19$ $x_1, x_2, s_1, s_2, a_1, a_2 \ge 0$

- ► The "phase one" problem
- ▶ An initial basis is given by $a_1 = 14$, $a_2 = 2$, and $s_2 = 19$:

basis	-w	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	a_1	a ₂	RHS			
-w	1	-5	2	1	0	0	0	-16			
a_1	0	3	2	0	0	1	0	14			
a_2	0	2	-4	-1	0	0	1	2			
<i>s</i> ₂	0	4	3	0	1	0	0	19			
	•						4		· 《불》《불》	- 1	200

Lecture 2

Applied Optimization

Find an initial solution using artificial variables

▶ x_1 enters $\Rightarrow a_2$ leaves (then $x_2 \Rightarrow s_2$, then $s_1 \Rightarrow a_1$)

,,T	,	- 2		(0,, 0,,	,, J	∠,	•·· • ₁	, 41,
basis	-w	<i>X</i> 1	<i>X</i> ₂	<i>S</i> ₁	s ₂	a ₁	a_2	RHS
-w	1	-5	2	1	0	0	0	-16
a ₁	0	3	2	0	0	1	0	14
a_2	0	2	-4	-1	0	0	1	2
S 2	0	4	3	0	1	0	0	19
-w	1	0	-8	-1.5	0	0		-11
a_1	0	0	8	1.5	0	1		11
<i>X</i> 1	0	1	-2	-0.5	0	0		1
s ₂	0	0	11	2	1	0		15
-w	1	0	0	-0.045	0.727	0		-0.091
a ₁	0	0	0	0.045	-0.727	1		0.091
x_1	0	1	0	-0.136	0.182	0		3.727
<i>X</i> ₂	0	0	1	0.182	0.091	0		1.364
-w	1	0	0	0	0			0
<i>s</i> ₁	0	0	0	1	-16			2
<i>X</i> ₁	0	1	0	0	-2			4
<i>X</i> ₂	0	0	1	0	3			1

A feasible basis is given by $x_1 = 4$, $x_2 = 1$, and $s_1 = 2$

Infeasible linear programs

- ► If the solution to the "phase one" problem has optimal value = 0, a feasible basis has been found
- ⇒ Start optimizing the original objective function z from this basis (homework)
- If the solution to the "phase one" problem has optimal value w > 0, no feasible solutions exist
- ▶ What would this mean in a real application?
- ► Alternative: Big-M method: Add the artificial variables to the original objective—with a large coefficient Example:

minimize
$$z = 2x_1 + 3x_2$$

 \Rightarrow minimize $z_a = 2x_1 + 3x_2 + Ma_1 + Ma_2$

Lecture 2

Applied Optimization

Alternative optimal solutions

Draw Graph!!

► Example:

minimize
$$z = 2x_1 + 4x_2$$

subject to $x_1 + 2x_2 \le 5$
 $x_1 + x_2 \le 4$
 $x_1, x_2 > 0$

- ▶ The extreme points $(0, \frac{5}{2})$ and (3, 1) have the same optimal value z = 10
- ► All solutions that are positive linear (convex) combinations of these are optimal:

$$(x_1, x_2) = \alpha \cdot (0, \frac{5}{2}) + (1 - \alpha) \cdot (3, 1), \quad 0 \le \alpha \le 1$$

←□ → ←□ → ← □ → ← □ → へへ ○