MVE165/MMG630, Applied Optimization Lecture 3 Ann-Brith Strömberg 2009-03-20 #### Alternative optimal solutions ► Example: maximize $$z = 2x_1 +4x_2$$ subject to $x_1 +2x_2 \le 5$ $x_1 +x_2 \le 4$ $x_1, x_2 \ge 0$ - DRAW GRAPH!! - ▶ The extreme points $(0, \frac{5}{2})$ and (3, 1) have the same optimal value z = 10 - ▶ All solutions that are positive linear (convex) combinations of these are optimal: $$(x_1, x_2) = \alpha \cdot (0, \frac{5}{2}) + (1 - \alpha) \cdot (3, 1), \quad 0 \le \alpha \le 1$$ Reduced cost of a non-basic variable is 0 in an optimal basis <ロ > < 回 > < 回 > < 巨 > < 巨 > 豆 り < ⊙ > < ⊙ > ○ 4□ > 4□ > 4 = > 4 = > = 90 #### A general linear program in standard form \triangleright A linear program with n non-negative variables, m equality constraints (m < n), and non-negative right hand sides: On matrix form it is written as: maximize $$z = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$, subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}^n$, where $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m_+$ ($\mathbf{b} \geq \mathbf{0}^m$), and $\mathbf{c} \in \mathbb{R}^n$. Lecture 3 Applied Optimization #### General derivation of the simplex method - \triangleright B = set of basic variables. N = set of non-basic variables - $\Rightarrow |B| = m \text{ and } |N| = n m$ - ▶ Partition matrix/vectors: $\mathbf{A} = (\mathbf{B}, \mathbf{N}), \mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N), \mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$ - ▶ The matrix **B** (**N**) contains the columns of **A** corresponding to the index set B(N) — Analogously for \mathbf{x} and \mathbf{c} - ► Rewrite the linear program: $$\begin{bmatrix} \text{maximize } z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \text{subject to } \mathbf{A} \mathbf{x} = \mathbf{b}, \\ \mathbf{x} \ge \mathbf{0}^{n} \end{bmatrix} = \begin{bmatrix} \text{maximize } z = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{x}_{B} + \mathbf{c}_{N}^{\mathrm{T}} \mathbf{x}_{N} \\ \text{subject to } \mathbf{B} \mathbf{x}_{B} + \mathbf{N} \mathbf{x}_{N} = \mathbf{b}, \\ \mathbf{x}_{B} \ge \mathbf{0}^{m}, \ \mathbf{x}_{N} \ge \mathbf{0}^{n-m} \end{bmatrix}$$ ► Substitute: $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \Longrightarrow$ $$\begin{split} \text{maximize} \quad z &= \mathbf{c}_B^{\scriptscriptstyle \mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\scriptscriptstyle \mathrm{T}} - \mathbf{c}_B^{\scriptscriptstyle \mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N \\ \text{subject to} \quad & \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m, \\ \mathbf{x}_N &\geq \mathbf{0}^{n-m} \end{split}$$ #### Optimality and feasibility ▶ Optimality condition (for maximization) The basis B is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \leq \mathbf{0}^{n-m}$ (marginal values = reduced costs ≤ 0) If not, choose as entering variable $j \in N$ the one with the largest value of the reduced cost $c_i - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_i$ ► Feasibility condition For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$ Choose the leaving variable $i^* \in B$ according to $$i^* = \arg\min_{i \in B} \left\{ \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_i)_i} \middle| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0 \right\}$$ Lecture 3 Applied Optimization 4□ > 4□ > 4□ > 4□ > 4□ > 90 #### In the simplex tableau we have | basis | -z | \mathbf{x}_B | x _N | S | RHS | |------------------|----|----------------|--|---|---| | -z | 1 | 0 | $\mathbf{c}_{N}^{\mathrm{T}} - \mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}$ | $-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}$ | $-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$ | | \mathbf{x}_{B} | 0 | ı | $B^{-1}N$ | \mathbf{B}^{-1} | $B^{-1}b$ | - **s** denotes possible slack variables (columns for **s** are copies of certain columns for $(\mathbf{x}_B, \mathbf{x}_N)$) - ► The computations performed by the simplex algorithm involve matrix inversions and updates of these - ▶ A non-basic (basic) variable enters (leaves) the basis \Rightarrow one column, \mathbf{A}_i , of \mathbf{B} is replaced by another, \mathbf{A}_k - ▶ Row operations \Leftrightarrow Updates of \mathbf{B}^{-1} (and $\mathbf{B}^{-1}\mathbf{N}$, $\mathbf{B}^{-1}\mathbf{b}$, and $\mathbf{c}_{\mathbf{B}}^{\mathrm{T}}\mathbf{B}^{-1}$) - ⇒ Efficient numerical computations are crucial for the performance of the simplex algorithm #### Linear programming duality ► To each (primal) linear program corresponds a dual linear program: [Primal] minimize $$z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$$, subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{x} > \mathbf{0}^n$. [Dual] maximize $$w = \mathbf{b}^{\mathrm{T}} \mathbf{y}$$, subject to $\mathbf{A}^{\mathrm{T}} \mathbf{y} < \mathbf{c}$, Lecture 3 Applied Optimizati ### In practice ... ► A primal linear program minimize $$z = 2x_1 + 3x_2$$ subject to $3x_1 + 2x_2 = 14$ $2x_1 - 4x_2 \ge 2$ $4x_1 + 3x_2 \le 19$ $x_1, x_2 > 0$ ▶ The corresponding dual linear program # Rules for constructing the dual program (p. 327) | maximization | \Leftrightarrow | minimization | |----------------|-------------------|----------------| | dual program | \Leftrightarrow | primal program | | primal program | \Leftrightarrow | dual program | | constraints | | variables | | \geq | \Leftrightarrow | ≤ 0 | | \leq | \Leftrightarrow | ≥ 0 | | = | \Leftrightarrow | free | | variables | | constraints | | ≥ 0 | \Leftrightarrow | \geq | | ≤ 0 | \Leftrightarrow | \leq | | free | \Leftrightarrow | = | The dual of the dual of any linear program equals the primal Lecture 3 Applied Optimization # Duality properties (Ch. 7.5) ▶ Weak duality: Let x be a feasible point in the primal and y be a feasible point in the dual. Then, $$z = \mathbf{c}^{\mathrm{T}}\mathbf{x} > \mathbf{b}^{\mathrm{T}}\mathbf{y} = w$$ - ▶ **Strong duality**: In a pair of primal and dual linear programs, if one of them has an optimal solution, so does the other, and their optimal values are equal. - **Complementary slackness**: If x is optimal in the primal and y is optimal in the dual, then $x^{T}(c - A^{T}y) = y^{T}(b - Ax) = 0$. If x is feasible in the primal, y is feasible in the dual, and $\mathbf{x}^{\mathrm{T}}(\mathbf{c} - \mathbf{A}^{\mathrm{T}}\mathbf{y}) = \mathbf{y}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}) = 0$, then \mathbf{x} and \mathbf{y} are optimal for their respective problems. #### <ロ > < 回 > < 回 > < 巨 > < 巨 > 豆 り < ⊙ > < ⊙ > ○ **◆□ > ◆□ > ◆臣 > ◆臣 > 臣 り 9 ○** ○ | primal (dual) problem | \iff | dual (primal) problem | |---------------------------------------|-------------------|---| | unique and
non-degenerate solution | \iff | unique and
non-degenerate solution | | unbounded solution | \Longrightarrow | no feasible solutions | | no feasible solutions | \Longrightarrow | unbounded solution or
no feasible solutions | | degenerate solution | \iff | alternative solutions | 4□ > 4□ > 4 = > 4 = > = 90 #### Exercises on duality ► Formulate and solve graphically the dual of: minimize $$z = 6x_1 + 3x_2 + x_3$$ subject to $6x_1 - 3x_2 + x_3 \ge 2$ $3x_1 + 4x_2 + x_3 \ge 5$ $x_1, x_2, x_3 \ge 0$ - ▶ Then find the optimal primal solution - ▶ Verify that the dual of the dual equals the primal #### Sensitivity analysis - ► How does the optimum change when the right hand sides (resources, e.g.) change? - ▶ When the objective coefficients (prices, e.g.) change? - ▶ Assume that the basis *B* is optimal: maximize $$z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N$$ subject to $\mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \ge \mathbf{0}^m$, $\mathbf{x}_N \ge \mathbf{0}^{n-m}$ $$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N$$ Lecture 3 Applied Optimization #### Changes in the right hand side coefficients - ▶ Suppose **b** changes to $\mathbf{b} + \Delta \mathbf{b}$ - ⇒ New optimal value: $$z^{\text{new}} = \mathbf{c}_{B}^{\text{T}} \mathbf{B}^{-1} (\mathbf{b} + \Delta \mathbf{b}) = z + \mathbf{c}_{B}^{\text{T}} \mathbf{B}^{-1} \Delta \mathbf{b}$$ - ▶ The current basis is feasible if $\mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) \geq 0$ - ▶ If not: negative values will occur in the right hand side - ► The reduced costs are unchanged (negative, at optimum) ⇒ this can be resolved using the *dual simplex method* #### Changes in the right hand side coefficients ► Consider the linear program minimize $$z = -x_1 - 2x_2$$ subject to $-2x_1 + x_2 \le 2$ $-x_1 + 2x_2 \le 7$ Draw graph!! $x_1 \le 3$ $x_1, x_2 \ge 0$ ▶ The optimal solution is given by | basis | -z | <i>x</i> ₁ | <i>X</i> 2 | s_1 | <i>s</i> ₂ | <i>s</i> ₃ | RHS | |-------|----|-----------------------|------------|-------|-----------------------|-----------------------|-----| | -z | 1 | 0 | 0 | 0 | 1 | 2 | 13 | | | 0 | 0 | 1 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | 5 | | x_1 | 0 | 1 | 0 | 0 | Ō | 1 | 3 | | s_1 | 0 | 0 | 0 | 1 | $-\frac{1}{2}$ | <u>3</u> | 3 | Lecture 3 Applied Optimization #### Changes in the right hand side coefficients ▶ Change the right hand side according to minimize $$z=-x_1$$ $-2x_2$ subject to $-2x_1$ $+x_2 \le 2$ $-x_1$ $+2x_2 \le 7+\delta$ x_1 ≤ 3 $x_1, x_2 \ge 0$ ▶ The change in the right hand side is given by $\mathbf{B}^{-1}(0,\delta,0)^{\scriptscriptstyle \mathrm{T}}=(\tfrac{1}{2}\delta,0,-\tfrac{1}{2}\delta)^{\scriptscriptstyle \mathrm{T}}\Rightarrow \text{new optimal tableau}:$ | basis | -z | <i>x</i> ₁ | <i>x</i> ₂ | s ₁ | s ₂ | <i>5</i> 3 | RHS | |-----------------------|----|-----------------------|-----------------------|-----------------------|-----------------------|---------------|-------------------------| | -z | 1 | 0 | 0 | 0 | 1 | 2 | $13 + \delta$ | | <i>x</i> ₂ | 0 | 0 | 1 | 0 | $\frac{1}{2}$ | 1/2 | $5 + \frac{1}{2}\delta$ | | x_1 | 0 | 1 | 0 | 0 | Ō | $\bar{1}$ | 3 | | s_1 | 0 | 0 | 0 | 1 | $-\frac{1}{2}$ | $\frac{3}{2}$ | $3 - \frac{1}{2}\delta$ | ▶ The current basis is feasible if $-10 \le \delta \le 6$ # Changes in the right hand side coefficients ▶ Suppose $\delta = 8$: | basis | -z | <i>x</i> ₁ | <i>x</i> ₂ | s_1 | <i>s</i> ₂ | <i>s</i> ₃ | RHS | |-------|----|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----| | -z | 1 | 0 | 0 | 0 | 1 | 2 | 21 | | | 0 | 0 | 1 | 0 | 1/2 | $\frac{1}{2}$ | 9 | | x_1 | 0 | 1 | 0 | 0 | Ō | $\overline{1}$ | 3 | | s_1 | 0 | 0 | 0 | 1 | $-\frac{1}{2}$ | $\frac{3}{2}$ | -1 | - ▶ Dual simplex iteration: - $ightharpoonup s_1 = -1$ has to leave the basis - ▶ Find the smallest ratio between reduced costs (for non-basic columns) and (negative) elements in the " s_1 -row" (to stay optimal) - ▶ s₂ will enter the basis **New optimal** tableau: | basis | -z | <i>x</i> ₁ | <i>x</i> ₂ | s_1 | <i>s</i> ₂ | <i>s</i> ₃ | RHS | |-----------------------|----|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----------| | -z | 1 | 0 | 0 | 2 | 0 | 5 | 19 | | <i>x</i> ₂ | 0 | 0 | 1 | 1 | 0 | 2 | 8 | | x_1 | 0 | 1 | 0 | 0 | 0 | 1 | 3 | | <i>s</i> ₂ | 0 | 0 | 0 | -2 | 1 | -3 | 2 | | | | | | | | 4 0 6 | 4 400 5 4 | # Changes in the objective coefficients - ▶ Suppose **c** changes to $\mathbf{c} + \Delta \mathbf{c}$ - ► The new optimal value: $$z^{\text{new}} = (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\text{T}} \mathbf{B}^{-1} \mathbf{b} = z + \Delta \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} \mathbf{b}$$ - ▶ The current basis is optimal if $(\mathbf{c}_N + \Delta \mathbf{c}_N)^{\mathrm{T}} - (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} < \mathbf{0}$ - ▶ If not: more simplex iterations to find the optimal solution <ロ > < 回 > < 回 > < 巨 > < 巨 > 豆 り < ⊙ > < ⊙ > ○ #### Changes in the objective coefficients ► Change the objective according to minimize $$z=-x_1+(-2+\delta)x_2$$ subject to $-2x_1+x_2\leq 2$ $-x_1+2x_2\leq 7$ $x_1\leq 3$ $x_1,x_2\geq 0$ ▶ The changes in the reduced costs are given by $-(\delta,0,0) \breve{\mathbf{B}}^{-1} \mathbf{N} = (-\frac{1}{2}\delta,-\frac{1}{2}\delta) \Rightarrow$ new optimal tableau: | basis | -z | x_1 | x_2 | s_1 | <i>s</i> ₂ | <i>s</i> ₃ | RHS | |-----------------------|----|-------|-------|-------|-----------------------|-------------------------|--------------| | -z | 1 | 0 | 0 | 0 | $1-\frac{1}{2}\delta$ | $2 - \frac{1}{2}\delta$ | $13-5\delta$ | | <i>x</i> ₂ | 0 | 0 | 1 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | 5 | | <i>x</i> ₁ | 0 | 1 | 0 | 0 | Ō | Ī | 3 | | s_1 | 0 | 0 | 0 | 1 | $-\frac{1}{2}$ | $\frac{3}{2}$ | 3 | ▶ The current basis is optimal if $\delta < 2$ Lecture 3 Applied Optimization #### Changes in the objective coefficients ▶ Suppose $\delta = 4$: new tableau: | basis | -z | <i>x</i> ₁ | <i>x</i> ₂ | s_1 | <i>s</i> ₂ | <i>s</i> ₃ | RHS | |-------|----|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----| | -z | 1 | 0 | 0 | 0 | -1 | 0 | -7 | | | 0 | 0 | 1 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | 5 | | x_1 | 0 | 1 | 0 | 0 | Ō | 1 | 3 | | s_1 | 0 | 0 | 0 | 1 | $-\frac{1}{2}$ | <u>3</u> | 3 | ▶ Let s_2 enter and x_2 leave the basis. New optimal tableau: | basis | -z | x_1 | <i>x</i> ₂ | s_1 | <i>s</i> ₂ | <i>5</i> 3 | RHS | |-----------------------|----|-------|-----------------------|-------|-----------------------|------------|-----| | -z | 1 | 0 | 2 | 0 | 0 | 1 | 3 | | <i>s</i> ₂ | 0 | 0 | 2 | 0 | 1 | 1 | 10 | | x_1 | 0 | 1 | 0 | 0 | 0 | 1 | 3 | | s_1 | 0 | 0 | 1 | 1 | 0 | 2 | 8 |