MVE165/MMG630, Applied Optimization Lecture 3

Ann-Brith Strömberg

2009-03-20

Alternative optimal solutions

► Example:

maximize
$$z = 2x_1 +4x_2$$

subject to $x_1 +2x_2 \le 5$
 $x_1 +x_2 \le 4$
 $x_1, x_2 \ge 0$

- DRAW GRAPH!!
- ▶ The extreme points $(0, \frac{5}{2})$ and (3, 1) have the same optimal value z = 10
- ▶ All solutions that are positive linear (convex) combinations of these are optimal:

$$(x_1, x_2) = \alpha \cdot (0, \frac{5}{2}) + (1 - \alpha) \cdot (3, 1), \quad 0 \le \alpha \le 1$$

Reduced cost of a non-basic variable is 0 in an optimal basis

<ロ > < 回 > < 回 > < 巨 > < 巨 > 豆 り < ⊙ > < ⊙ > ○

4□ > 4□ > 4 = > 4 = > = 90

A general linear program in standard form

 \triangleright A linear program with n non-negative variables, m equality constraints (m < n), and non-negative right hand sides:

On matrix form it is written as:

maximize
$$z = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$
, subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}^n$,

where $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m_+$ ($\mathbf{b} \geq \mathbf{0}^m$), and $\mathbf{c} \in \mathbb{R}^n$.

Lecture 3 Applied Optimization

General derivation of the simplex method

- \triangleright B = set of basic variables. N = set of non-basic variables
- $\Rightarrow |B| = m \text{ and } |N| = n m$
- ▶ Partition matrix/vectors: $\mathbf{A} = (\mathbf{B}, \mathbf{N}), \mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N), \mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$
- ▶ The matrix **B** (**N**) contains the columns of **A** corresponding to the index set B(N) — Analogously for \mathbf{x} and \mathbf{c}
- ► Rewrite the linear program:

$$\begin{bmatrix} \text{maximize } z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \text{subject to } \mathbf{A} \mathbf{x} = \mathbf{b}, \\ \mathbf{x} \ge \mathbf{0}^{n} \end{bmatrix} = \begin{bmatrix} \text{maximize } z = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{x}_{B} + \mathbf{c}_{N}^{\mathrm{T}} \mathbf{x}_{N} \\ \text{subject to } \mathbf{B} \mathbf{x}_{B} + \mathbf{N} \mathbf{x}_{N} = \mathbf{b}, \\ \mathbf{x}_{B} \ge \mathbf{0}^{m}, \ \mathbf{x}_{N} \ge \mathbf{0}^{n-m} \end{bmatrix}$$

► Substitute: $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \Longrightarrow$

$$\begin{split} \text{maximize} \quad z &= \mathbf{c}_B^{\scriptscriptstyle \mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\scriptscriptstyle \mathrm{T}} - \mathbf{c}_B^{\scriptscriptstyle \mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N \\ \text{subject to} \quad & \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m, \\ \mathbf{x}_N &\geq \mathbf{0}^{n-m} \end{split}$$

Optimality and feasibility

▶ Optimality condition (for maximization)

The basis B is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \leq \mathbf{0}^{n-m}$ (marginal values = reduced costs ≤ 0)

If not, choose as entering variable $j \in N$ the one with the largest value of the reduced cost $c_i - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_i$

► Feasibility condition

For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$

Choose the leaving variable $i^* \in B$ according to

$$i^* = \arg\min_{i \in B} \left\{ \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \middle| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0 \right\}$$

Lecture 3

Applied Optimization

In the simplex tableau we have

basis	-z	\mathbf{x}_B	x _N	S	RHS
-z	1	0	$\mathbf{c}_{N}^{\mathrm{T}} - \mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$
\mathbf{x}_B	0	ı	$B^{-1}N$	B^{-1}	$B^{-1}b$

- **s** denotes possible slack variables (columns for **s** are copies of certain columns for $(\mathbf{x}_B, \mathbf{x}_N)$)
- ► The computations performed by the simplex algorithm involve matrix inversions and updates of these
- ▶ A non-basic (basic) variable enters (leaves) the basis \Rightarrow one column, \mathbf{A}_i , of \mathbf{B} is replaced by another, \mathbf{A}_k
- ▶ Row operations \Leftrightarrow Updates of \mathbf{B}^{-1} (and $\mathbf{B}^{-1}\mathbf{N}$, $\mathbf{B}^{-1}\mathbf{b}$, and $\mathbf{c}_{\mathcal{B}}^{\mathrm{T}}\mathbf{B}^{-1}$)
- ⇒ Efficient numerical computations are crucial for the performance of the simplex algorithm

Derivation of duality

 \triangleright A linear program with optimal value z^*

maximize
$$z:= 20x_1 + 18x_2$$
 weights subject to $7x_1 + 10x_2 \le 3600$ (1) v_1 $16x_1 + 12x_2 \le 5400$ (2) v_2 $x_1, x_2 \ge 0$

- ▶ How large can z^* be?
- ▶ Compute upper estimates of z^* , e.g.
 - Multiply (1) by $3 \Rightarrow 21x_1 + 30x_2 < 10800 \Rightarrow z^* < 10800$
 - Multiply (2) by $1.5 \Rightarrow 24x_1 + 18x_2 < 8100 \Rightarrow z^* < 8100$
 - ► Combine: $0.6 \times (1) + 1 \times (2) \Rightarrow 20.2x_1 + 18x_2 \le 7560 \Rightarrow z^* \le 7560$
- ▶ Do better than guess—compute optimal weights!
- ▶ Value of estimate: $w = 3600v_1 + 5400v_2 \rightarrow min$
- ► Constraints on weights: $\begin{bmatrix} 7v_1 + 16v_2 & \ge 20 \\ 10v_1 + 12x_2 & \ge 18 \\ v_1, v_2 & \ge 0 \end{bmatrix}$

Lecture 3

Applied Optimizatio

The best (lowest) possible upper estimate of z^*

minimize
$$w:=3600v_1+5400v_2$$
 subject to $7v_1+16v_2\geq 20$ $10v_1+12v_2\geq 18$ $v_1,v_2\geq 0$

- ▶ A linear program!
- ▶ It is called the **dual** of the original linear program

The lego model—the market problem

► Consider the lego problem

maximize
$$z=1600x_1+1000x_2$$
 subject to $2x_1+x_2 \leq 6$ $2x_1+2x_2 \leq 8$ $x_1, x_2 \geq 0$

- ▶ Option: Sell blocks instead of making furniture
- $\triangleright v_1(v_2) = \text{price of a large (small) block}$
- Market wish to minimize payment: minimize $6v_1 + 8v_2$
- ▶ I sell if prices are high enough:
 - \triangleright 2 $v_1 + 2v_2 > 1600$ otherwise better to make tables $v_1 + 2v_2 > 1000$ - otherwise better to make chairs $V_1, V_2 > 0$ - prices are naturally non-negative

Lecture 3

Applied Optimization

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 990

Linear programming duality

▶ To each primal linear program corresponds a dual linear program

[Primal] minimize
$$z = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$
, subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}^n$, [Dual] maximize $w = \mathbf{b}^{\mathrm{T}}\mathbf{y}$, subject to $\mathbf{A}^{\mathrm{T}}\mathbf{y} < \mathbf{c}$.

▶ On component form:

On component form: minimize
$$z = \sum_{j=1}^{n} c_j x_j$$
 subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, \dots, m,$ $x_j \geq 0, \quad j = 1, \dots, n,$ maximize $w = \sum_{j=1}^{n} b_i y_i$ subject to $\sum_{i=1}^{m} a_{ij} y_i \leq c_j, \quad j = 1, \dots, n.$

In practice ...

► A primal linear program

minimize
$$z = 2x_1 + 3x_2$$

subject to $3x_1 + 2x_2 = 14$
 $2x_1 - 4x_2 \ge 2$
 $4x_1 + 3x_2 \le 19$
 $x_1, x_2 \ge 0$

▶ The corresponding dual linear program

Lecture 3

Applied Optimization

Rules for constructing the dual program (p. 327)

maximization	\Leftrightarrow	minimization
dual program	\Leftrightarrow	primal program
primal program	\Leftrightarrow	dual program
constraints		variables
\geq	\Leftrightarrow	≤ 0
\leq	\Leftrightarrow	≥ 0
=	\Leftrightarrow	free
variables		constraints
≥ 0	\Leftrightarrow	\geq
≤ 0	\Leftrightarrow	\leq
free	\Leftrightarrow	=

The dual of the dual of any linear program equals the primal

4□ > 4回 > 4 = > 4 = > = 990

Lecture 3

Applied Optimization

Duality properties (Ch. 7.5)

► Weak duality: Let x be a feasible point in the primal and y be a feasible point in the dual. Then,

$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \ge \mathbf{b}^{\mathrm{T}} \mathbf{y} = \mathbf{w}$$

- ▶ **Strong duality**: In a pair of primal and dual linear programs, if one of them has an optimal solution, so does the other, and their optimal values are equal.
- ▶ Complementary slackness: If x is optimal in the primal and y is optimal in the dual, then $x^{T}(c A^{T}y) = y^{T}(b Ax) = 0$.

If \mathbf{x} is feasible in the primal, \mathbf{y} is feasible in the dual, and $\mathbf{x}^{\mathrm{T}}(\mathbf{c} - \mathbf{A}^{\mathrm{T}}\mathbf{y}) = \mathbf{y}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}) = 0$, then \mathbf{x} and \mathbf{y} are optimal for their respective problems.

Lecture 3

Applied Optimization

Relations between primal and dual optimal solutions

primal (dual) problem	\iff	dual (primal) problem
unique and non-degenerate solution	\iff	unique and non-degenerate solution
unbounded solution	\Longrightarrow	no feasible solutions
no feasible solutions	\Longrightarrow	unbounded solution or no feasible solutions
degenerate solution	\iff	alternative solutions

◆ロト ◆部 → ◆恵 → ・恵 ・ り へ ②

4日 → 4回 → 4 三 → 4 三 → 9 Q ○

► Formulate and solve graphically the dual of:

minimize
$$z = 6x_1 + 3x_2 + x_3$$

subject to $6x_1 - 3x_2 + x_3 \ge 2$
 $3x_1 + 4x_2 + x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

- Then find the optimal primal solution
- ▶ Verify that the dual of the dual equals the primal

Lecture 3

Applied Optimizati

Sensitivity analysis

- ► How does the optimum change when the right hand sides (resources, e.g.) change?
- ▶ When the objective coefficients (prices, e.g.) change?
- ▶ Assume that the basis *B* is optimal:

maximize
$$z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N$$

subject to $\mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \ge \mathbf{0}^m$, $\mathbf{x}_N \ge \mathbf{0}^{n-m}$

Changes in the right hand side coefficients

- ▶ Suppose **b** changes to $\mathbf{b} + \Delta \mathbf{b}$
- ⇒ New optimal value:

$$z^{\text{new}} = \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} (\mathbf{b} + \Delta \mathbf{b}) = z + \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} \Delta \mathbf{b}$$

- ▶ The current basis is feasible if $\mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) \geq 0$
- ▶ If not: negative values will occur in the right hand side
- ► The reduced costs are unchanged (negative, at optimum) ⇒ this can be resolved using the *dual simplex method*

Applied Optimization

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Changes in the right hand side coefficients

► Consider the linear program

minimize
$$z = -x_1 - 2x_2$$
 subject to $-2x_1 + x_2 \le 2$ $-x_1 + 2x_2 \le 7$ Draw graph!! $x_1 \le 3$ $x_1, x_2 \ge 0$

► The optimal solution is given by

basis	-z	<i>x</i> ₁	<i>x</i> ₂	s_1	s ₂	<i>s</i> ₃	RHS
_z	1	0	0	0	1	2	13
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	Ō	$\bar{1}$	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

re 3

Applied Optimizati

Changes in the right hand side coefficients

▶ Change the right hand side according to

$$\begin{array}{lll} \text{minimize} & z = & -x_1 & -2x_2 \\ \text{subject to} & & -2x_1 & +x_2 & \leq 2 \\ & & -x_1 & +2x_2 & \leq 7+\delta \\ & & x_1 & & \leq 3 \\ & & x_1, x_2 & \geq 0 \end{array}$$

► The change in the right hand side is given by $\mathbf{B}^{-1}(0, \delta, 0)^{\mathrm{T}} = (\frac{1}{2}\delta, 0, -\frac{1}{2}\delta)^{\mathrm{T}} \Rightarrow \text{new optimal tableau}$:

basis	-z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	1	0	0	0	1	2	$13 + \delta$
	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	$5 + \frac{1}{2}\delta$
x_1	0	1	0	0	0	1	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u>	$3 - \frac{1}{2}\delta$

▶ The current basis is feasible if $-10 \le \delta \le 6$

Lecture 3

Applied Optimizatio

Changes in the right hand side coefficients

▶ Suppose $\delta = 8$:

basis	-z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	53	RHS
-z	1	0	0	0	1	2	21
<i>X</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	9
x_1	0	1	0	0	Ō	ī	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u>	-1

- ► Dual simplex iteration:
- lacktriangle $s_1=-1$ has to leave the basis
- ► Find the smallest ratio between reduced costs (for non-basic columns) and (negative) elements in the "s₁-row" (to stay optimal)
- ▶ s₂ will enter the basis **New optimal** tableau:

basis	-z	x_1	x_2	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	1	0	0	2	0	5	19
<i>x</i> ₂	0	0	1	1	0	2	8
x_1	0	1	0	0	0	1	3
<i>s</i> ₂	0	0	0	-2	1	-3	2

Changes in the objective coefficients

- ▶ Suppose **c** changes to $\mathbf{c} + \Delta \mathbf{c}$
- ► The new optimal value:

$$z^{\text{new}} = (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\text{T}} \mathbf{B}^{-1} \mathbf{b} = z + \Delta \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} \mathbf{b}$$

- ▶ The current basis is optimal if $(\mathbf{c}_N + \Delta \mathbf{c}_N)^{\mathrm{T}} - (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} < \mathbf{0}$
- ▶ If not: more simplex iterations to find the optimal solution

Changes in the objective coefficients

▶ Change the objective according to

minimize
$$z = -x_1 + (-2 + \delta)x_2$$

subject to $-2x_1 + x_2 \le 2$
 $-x_1 +2x_2 \le 7$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

▶ The changes in the reduced costs are given by $-(\delta,0,0)\mathbf{B}^{-1}\mathbf{N}=(-\frac{1}{2}\delta,-\frac{1}{2}\delta)\Rightarrow$ new optimal tableau:

basis	-z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	1	0	0	0	$1-\frac{1}{2}\delta$	$2-\frac{1}{2}\delta$	$13-5\delta$
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	Ō	Ī	3
s_1	0	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

▶ The current basis is optimal if $\delta \leq 2$

Changes in the objective coefficients

▶ Suppose $\delta = 4$: new tableau:

basis	-z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	1	0	0	0	-1	0	-7
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	0	$\bar{1}$	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

▶ Let s_2 enter and x_2 leave the basis. New optimal tableau:

basis	-z	x_1	x_2	s_1	s 2	<i>5</i> 3	RHS
-z	1	0	2	0	0	1	3
<i>s</i> ₂	0	0	2	0	1	1	10
x_1	0	1	0	0	0	1	3
s_1	0	0	1	1	0	2	8

