A general linear program in standard form

» A linear program with n non-negative variables, m equality
constraints (m < n), and non-negative right hand sides:

n

maximize zZ = E CJXJ

MVE165/MMG630, Applied Optimization

Lecture 3 =1
subject to Za,-jxj- = b;, i=1,...,m,
Ann-Brith Stromberg j=1
xi =2 0, j=1,....n
» On matrix form it is written as:
2009-03-20
maximize z =c"x,
subject to Ax = b,
x>0,

where x € R7, A € R™", b RT (b>07), and c € N".
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Alternative optimal solutions General derivation of the simplex method

» B = set of basic variables, N = set of non-basic variables

» Example: = |[Bl=mand [Nj=n—m
maximize z= 2x; +4x » Partition matrixivectors: A=(B,N), x=(xg,xn), c=(cg,cn)
subject to x1 +2% <5 » The matrix B (N) contains the columns of A corresponding
X1 +x <4 to the index set B () — Analogously for x and ¢
DRAW GRAPH!! x1,x2 >0 » Rewrite the linear program:
_ _ maximize z = ¢ x maximize z = CgXg + CyXpy
> The extreme points (0, 3) and (3,1) have the same optimal . .
value z = 10 subject to Ax =b,| = | subject to Bxg + Nxy = b,
» All solutions that are positive linear (convex) combinations of x> 0" xg 2 07, xy > 07"
these are optimal: » Substitute: xg = B~'b — B~ !Nxy =

maximize z = cgB7'b +[c}, — ;BT !N]xy
subject to B 'b—- B Nxy >0,

» Reduced cost of a non-basic variable is 0 in an optimal basis xy > 0" "

(xl,xz):a-(o,g)+(1—a)-(3,1), 0<a<1
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Optimality and feasibility Derivation of duality

» Optimality condition (for maximization) A linear program with optimal value z

. . . e T rR-1 n—rm maximize z:= 20x; +18x» weights
El'he b.as'sl B IIS OpEmac:I if ch :Bli 0)N <0 subject to 7x1 +10x; <3600 (1) Vi
marginal values = reduced costs < 16x; +12% <5400 (2) Vs
If not, choose as entering variable j € N the one with the x1,x2 >0

largest value of the reduced cost ¢; — c5B 1A;

v

How large can z* be?
Compute upper estimates of z*, e.g.
» Multiply (1) by 3 = 21x; + 30x, < 10800 = z* < 10800
For all i € B it holds that x; = (B 'b); — (B *A;);x » Multiply (2) by 1.5 = 24x; + 18x, < 8100 = z* < 8100
» Combine: 0.6x(1)+1x(2) = 20.2x;+18x, <7560 = z* <7560

Do better than guess—compute optimal weights!

v

» Feasibility condition

Choose the leaving variable i* € B according to

v

_ _ (Bflb),- . » Value of estimate: w = 3600v; + 5400v> — min
I » Constraints on weights: | 10v; +12x, > 18
[ vi,vo >0 J
In the simplex tableau we have The best (lowest) possible upper estimate of z*
basis | —z xg XN s RHS

—z |1 0 c,—ciBIN| BT | LB b

X 0 I B-IN B! B lb minimize w := 3600v; + 5400v,
subject to Tvi + 16v, > 20
10vy + 12v, >18
» s denotes possible slack variables (columns for s are copies of vi,vo. >0

certain columns for (xg,Xy))

» The computations performed by the simplex algorithm involve
matrix inversions and updates of these

» A non-basic (basic) variable enters (leaves) the basis = one
column, Aj, of B is replaced by another, Ay

» Row operations < Updates of B~ (and B™!N, B™'b, and » It is called the dual of the original linear program
c;B71)

= Efficient numerical computations are crucial for the
performance of the simplex algorithm
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» A linear program!



» Consider the lego problem > A primal linear program

. minimize z = 2x; +3x
maximize z = 1600x; + 1000x» subiect to 3x1 —|—2x2 —1a
subject to 2x1 + x < 6 ) 2X1 4X2 > 0
1 —h4x2 2
2X1 + 2X2 S 8 4X1 —|—3X2 S 19
X1, X2 Z 0 X1, X2 > O
» Option: Sell blocks instead of making furniture > The corresponding dual linear program
» vi(vp) = price of a large (small) block maximize w = 14y +2yo +19y
» Market wish to minimize payment:  minimize 6v; + 8vy subject to 3yi +2y2  +4ys <2
. . 2y1 —4y» +3y; <3
» | sell if prices are high enough: " free
> 2v; + 2w, > 1600 — otherwise better to make tables y > 0’
> vy +2v, > 1000 — otherwise better to make chairs 2 2 0’
> vi,vp >0 — prices are naturally non-negative 3=

Linear programming duality Rules for constructing the dual program (p. 327)

» To each primal linear program corresponds a dual linear

program .o . L .
maximization p=— minimization

: S o _
[Primal]  minimize z=CX, dual program & primal program
subject to Ax=b, primal program <  dual program
x> 0", constraints variables
> <0
[Dual] maximize w=b"y, < N >0
subject to A"y <c. = free
variables constraints
» On component form: i 0 < i
minimize z =371, ;X Py 0 < =
subject to Yoiiaxp = bi, i=1...,m, ree < -
)(j Z 07 .j = 1’ et n7
maximize w = ZJ’.’ZI biyi The dual of the dual of any linear program equals the primal
subject to Smiaiyi < ¢y, j=1,...,n.
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Duality properties (Ch. 7.5) Exercises on duality

» Weak duality: Let x be a feasible point in the primal and y

be a feasible point in the dual. Then, » Formulate and solve graphically the dual of:
z=c"'x>b'y=w minimize z= 6x; +3x» +x3
subject to 6x; —3xp +x3 >2

3x1 +4xo 4+x3 >5

» Strong duality: In a pair of primal and dual linear programs, 1. x0.x3 >0

if one of them has an optimal solution, so does the other, and
their optimal values are equal.

» Complementary slackness: If x is optimal in the primal and

_ : _ . - - » Then find the optimal primal solution
y is optimal in the dual, then x"(c — A"y) = y"(b — Ax) = 0.

If x is feasible in the primal, y is feasible in the dual, and
xT(c — A"y) = y"(b — Ax) = 0, then x and y are optimal for
their respective problems.

» Verify that the dual of the dual equals the primal
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Relations between primal and dual optimal solutions Sensitivity analysis

» How does the optimum change when the right hand sides
(resources, e.g.) change?

primal (dual) problem <= dual (primal) problem

unique and = unique and
non-degenerate solution non-degenerate solution » When the objective coefficients (prices, e.g.) change?
unbounded solution = no feasible solutions » Assume that the basis B is optimal:
no feasible solutions — unbound.ed squtiQn or maximize z — cEB_lb +[cf — cTBB_lN]xN
no feasible solutions ) 1 1 m
subject to B 'b—- B "Nxy > 07,
degenerate solution <= alternative solutions XN 2

» xg = B~'b — B~ 'Nxy
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Changes in the right hand side coefficients

» Suppose b changes to b + Ab

= New optimal value:
2"V = ¢tB (b + Ab) = z + c5B 1Ab
» The current basis is feasible if B~!(b+ Ab) >0

» If not: negative values will occur in the right hand side

» The reduced costs are unchanged (negative, at optimum)
= this can be resolved using the dual simplex method
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Changes in the right hand side coefficients

» Consider the linear program

minimize z= —x3 —2Xx
subject to —2x1  +x <2
—x1 +2xp <7
DRAW GRAPH!! X1 <3
xi,x2 >0

» The optimal solution is given by

basis | —z x1 x» s1 s s3 | RHS
—z| 1 0 0 0 1 2] 13
x| 0 0 1 0 3 3 5
x| 01 0 0 0 1 3
s| 0 0 0 1 % 3 3
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Changes in the right hand side coefficients

» Change the right hand side according to

minimize z= —x
subject to —2x1
—x

X1

X1, X2

— 2X2
+xo
+2xo

>0

<2
<7+96
<3

» The change in the right hand side is given by
B~1(0,6,0)" = (46,0, —36)" = new optimal tableau:

basis | —z x3 x» s1 s s3 | RHS
—z| 1 0 0 0 1 2|13+
| 0 0 1 0 I Ll5+1%s
x| 0 1 0 0 0 1]3
ss|] 0 0 0 1 -3 3|3-125

» The current basis is feasible if =10 < § <6
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» Suppose § = 8:

basis | —z x; x» s s s3 | RHS
-z 1 0 0 O 1 2 21
x| 0 0 1 0 L I 9
X1 0O 1 0 O 0 1 3
s| 0 0 0 1 -1 3]
» Dual simplex iteration:
» s; = —1 has to leave the basis

» Find the smallest ratio between reduced costs (for non-basic
columns) and (negative) elements in the “s;-row” (to stay

optimal)
> s, will enter the basis — New optimal tableau:
basis | —z x1 x» s s s3 | RHS
—z 1 0 0 2 0 5 19
Xo o 0o 1 1 0 2 8
X1 0o 1 0 O 0 1 3
S» o o o -2 1 -3 2
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Changes in the objective coefficients

Changes in the objective coefficients

» Suppose ¢ changes to ¢ + Ac
» The new optimal value:

7"V = (cg + Acg)"B b=z + AcEB b

» The current basis is optimal if
(CN + ACN)T — (CB + ACB)TBle <0

> If not: more simplex iterations to find the optimal solution
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Changes in the objective coefficients

» Change the objective according to

minimize z= —x; +(-24d)x
subject to —2x1 +xp <2
—Xx1 +2x <7
X1 S 3

X1, X2 >0

» The changes in the reduced costs are given by
—(6,0,0)B~IN = (—34,—30) = new optimal tableau:

basis | —z x1 x» s S s3 RHS
—z| 1 0 0 0 1-156 2-16[13-56
x| 0 0 1 0 : > |5
x 0 1 0 0 0 1 |3
s, 0 0 0 1 -1 23

» The current basis is optimal if § < 2
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> Suppose § = 4: new tableau:

basis | —z x3 x» s s s3| RHS
-z| 1 0 0 0 -1 0]-7
x| 0 0 1 0 3 3|5
x| 0 1 0 0 0 1|3
s|] 0 0 0 1 -3 33

> Let s, enter and x, leave the basis. New optimal tableau:

basis | —z x3q x» s1 $ s3| RHS
—z 1 0 2 0 0 13
S 0 0 2 0 1 1/]10
x1 o 1 0 O 0 113
s 0o o 1 1 0 2|8
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