#### MVE165/MMG630, Applied Optimization Lecture 3

Ann-Brith Strömberg

2009-03-20



Lecture 3

#### Alternative optimal solutions

DRAW GRAPH!!

Example:

maximize 
$$z = 2x_1 + 4x_2$$
  
subject to  $x_1 + 2x_2 \le 5$   
 $x_1 + x_2 \le 4$   
 $x_1, x_2 > 0$ 

- ▶ The extreme points  $(0, \frac{5}{2})$  and (3, 1) have the same optimal value z = 10
- ▶ All solutions that are positive linear (convex) combinations of these are optimal:

$$(x_1, x_2) = \alpha \cdot (0, \frac{5}{2}) + (1 - \alpha) \cdot (3, 1), \quad 0 \le \alpha \le 1$$

▶ Reduced cost of a non-basic variable is 0 in an optimal basis

# A general linear program in standard form

 $\triangleright$  A linear program with n non-negative variables, m equality constraints (m < n), and non-negative right hand sides:

maximize 
$$z=\sum_{j=1}^n c_j x_j$$
 subject to  $\sum_{j=1}^n a_{ij} x_j = b_i, \quad i=1,\ldots,m,$   $x_j \geq 0, \quad j=1,\ldots,n.$ 

On matrix form it is written as:

maximize 
$$z = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$
, subject to  $\mathbf{A}\mathbf{x} = \mathbf{b}$ ,  $\mathbf{x} \ge \mathbf{0}^n$ ,

where  $\mathbf{x} \in \mathbb{R}^n$ ,  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ,  $\mathbf{b} \in \mathbb{R}^m_+$   $(\mathbf{b} \ge \mathbf{0}^m)$ , and  $\mathbf{c} \in \mathbb{R}^n$ .

#### General derivation of the simplex method

- $\triangleright$  B = set of basic variables, N = set of non-basic variables
- $\Rightarrow |B| = m \text{ and } |N| = n m$
- ▶ Partition matrix/vectors:  $\mathbf{A} = (\mathbf{B}, \mathbf{N}), \mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N), \mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$
- ▶ The matrix **B** (**N**) contains the columns of **A** corresponding to the index set B(N) — Analogously for  $\mathbf{x}$  and  $\mathbf{c}$
- Rewrite the linear program:

$$\begin{bmatrix} \text{maximize } z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \text{subject to } \mathbf{A} \mathbf{x} = \mathbf{b}, \\ \mathbf{x} \geq \mathbf{0}^{n} \end{bmatrix} = \begin{bmatrix} \text{maximize } z = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{x}_{B} + \mathbf{c}_{N}^{\mathrm{T}} \mathbf{x}_{N} \\ \text{subject to } \mathbf{B} \mathbf{x}_{B} + \mathbf{N} \mathbf{x}_{N} = \mathbf{b}, \\ \mathbf{x}_{B} \geq \mathbf{0}^{m}, \ \mathbf{x}_{N} \geq \mathbf{0}^{n-m} \end{bmatrix}$$

► Substitute: 
$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \Longrightarrow$$

maximize 
$$z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N$$
  
subject to  $\mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \ge \mathbf{0}^m$ ,  $\mathbf{x}_N \ge \mathbf{0}^{n-m}$ 

#### Optimality and feasibility

Optimality condition (for maximization)

The basis B is optimal if  $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \leq \mathbf{0}^{n-m}$ (marginal values = reduced costs < 0)

If not, choose as entering variable  $j \in N$  the one with the largest value of the reduced cost  $c_i - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_i$ 

Feasibility condition

For all  $i \in B$  it holds that  $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_i)_i x_i$ 

Choose the leaving variable  $i^* \in B$  according to

$$i^* = \arg\min_{i \in B} \left\{ \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \middle| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0 \right\}$$

Lecture 3 Applied Optimization

**→** ● → ◆ ■ → ● → 9 へ ●

#### In the simplex tableau we have

| basis                 | -z | $\mathbf{x}_B$ | ×N                                                                                     | S                                             | RHS                                                     |
|-----------------------|----|----------------|----------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|
| -z                    | 1  | 0              | $\mathbf{c}_{N}^{\mathrm{T}} - \mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}$ | $-\mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}$ | $-\mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$ |
| <b>x</b> <sub>B</sub> | 0  | I              | $B^{-1}N$                                                                              | $\mathbf{B}^{-1}$                             | $B^{-1}b$                                               |

- **s** denotes possible slack variables (columns for **s** are copies of certain columns for  $(\mathbf{x}_B, \mathbf{x}_N)$
- ▶ The computations performed by the simplex algorithm involve matrix inversions and updates of these
- ► A non-basic (basic) variable enters (leaves) the basis ⇒ one column,  $\mathbf{A}_i$ , of  $\mathbf{B}$  is replaced by another,  $\mathbf{A}_k$
- ▶ Row operations  $\Leftrightarrow$  Updates of  $\mathbf{B}^{-1}$  (and  $\mathbf{B}^{-1}\mathbf{N}$ ,  $\mathbf{B}^{-1}\mathbf{b}$ , and  $\mathbf{c}_{\mathbf{R}}^{\mathrm{T}}\mathbf{B}^{-1}$
- ⇒ Efficient numerical computations are crucial for the performance of the simplex algorithm

#### Derivation of duality

 $\triangleright$  A linear program with optimal value  $z^*$ 

maximize 
$$z:= 20x_1 + 18x_2$$
 weights subject to  $7x_1 + 10x_2 \le 3600$  (1)  $v_1$   $16x_1 + 12x_2 \le 5400$  (2)  $v_2$   $x_1, x_2 \ge 0$ 

- ► How large can z\* be?
- $\triangleright$  Compute upper estimates of  $z^*$ , e.g.
  - Multiply (1) by  $3 \Rightarrow 21x_1 + 30x_2 < 10800 \Rightarrow z^* < 10800$
  - ► Multiply (2) by  $1.5 \Rightarrow 24x_1 + 18x_2 < 8100 \Rightarrow z^* < 8100$
  - ► Combine:  $0.6 \times (1) + 1 \times (2) \Rightarrow 20.2x_1 + 18x_2 < 7560 \Rightarrow z^* < 7560$
- ▶ Do better than guess—compute optimal weights!
- ▶ Value of estimate:  $w = 3600v_1 + 5400v_2 \rightarrow min$
- $7v_1 + 16v_2 > 20$ ► Constraints on weights:  $10v_1 + 12v_2 > 18$

## The best (lowest) possible upper estimate of $z^*$

minimize 
$$w := 3600v_1 + 5400v_2$$
 subject to  $7v_1 + 16v_2 \ge 20$   $10v_1 + 12v_2 \ge 18$   $v_1, v_2 \ge 0$ 

- A linear program!
- ▶ It is called the **dual** of the original linear program

#### The lego model—the market problem

► Consider the lego problem

- ▶ Option: Sell blocks instead of making furniture
- $\triangleright v_1(v_2)$  = price of a large (small) block
- Market wish to minimize payment: minimize  $6v_1 + 8v_2$
- ▶ I sell if prices are high enough:
  - $\triangleright 2v_1 + 2v_2 > 1600$
- otherwise better to make tables
- $v_1 + 2v_2 > 1000$
- otherwise better to make chairs

 $v_1, v_2 > 0$ 

- prices are naturally non-negative

**イロト 4回ト 4 三ト 4 三 ・ り**Q ()

Lecture 3

Applied Optimization

#### Linear programming duality

▶ To each primal linear program corresponds a dual linear program

[Primal] minimize 
$$z = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$
, subject to  $\mathbf{A}\mathbf{x} = \mathbf{b}$ ,  $\mathbf{x} \geq \mathbf{0}^n$ , [Dual] maximize  $w = \mathbf{b}^{\mathrm{T}}\mathbf{y}$ , subject to  $\mathbf{A}^{\mathrm{T}}\mathbf{y} \leq \mathbf{c}$ .

► On component form:

#### In practice ...

► A primal linear program

minimize 
$$z = 2x_1 + 3x_2$$
  
subject to  $3x_1 + 2x_2 = 14$   
 $2x_1 - 4x_2 \ge 2$   
 $4x_1 + 3x_2 \le 19$   
 $x_1, x_2 \ge 0$ 

▶ The corresponding dual linear program

Lecture 3

**Applied Optimization** 

#### Rules for constructing the dual program (p. 327)

| ${\sf maximization}$ | $\Leftrightarrow$ | minimization   |
|----------------------|-------------------|----------------|
| dual program         | $\Leftrightarrow$ | primal program |
| primal program       | $\Leftrightarrow$ | dual program   |
| constraints          |                   | variables      |
| $\geq$               | $\Leftrightarrow$ | $\leq 0$       |
| $\leq$               | $\Leftrightarrow$ | $\geq 0$       |
| =                    | $\Leftrightarrow$ | free           |
| variables            |                   | constraints    |
| $\geq 0$             | $\Leftrightarrow$ | $\geq$         |
| $\leq 0$             | $\Leftrightarrow$ | <u> </u>       |
| free                 | $\Leftrightarrow$ | =              |

The dual of the dual of any linear program equals the primal

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

#### Duality properties (Ch. 7.5)

▶ Weak duality: Let x be a feasible point in the primal (minimization) and  $\mathbf{v}$  be a feasible point in the dual (maximization). Then,

$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x} > \mathbf{b}^{\mathrm{T}} \mathbf{y} = \mathbf{w}$$

- **Strong duality**: In a pair of primal and dual linear programs, if one of them has an optimal solution, so does the other, and their optimal values are equal.
- ▶ Complementary slackness: If x is optimal in the primal and  $\mathbf{y}$  is optimal in the dual, then  $\mathbf{x}^{\mathrm{T}}(\mathbf{c} - \mathbf{A}^{\mathrm{T}}\mathbf{y}) = \mathbf{y}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}) = 0$ .

If x is feasible in the primal, y is feasible in the dual, and  $\mathbf{x}^{\mathrm{T}}(\mathbf{c} - \mathbf{A}^{\mathrm{T}}\mathbf{y}) = \mathbf{y}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}) = 0$ , then  $\mathbf{x}$  and  $\mathbf{y}$  are optimal for their respective problems.

Lecture 3 Applied Optimization

#### Relations between primal and dual optimal solutions

| primal (dual) problem                 | $\iff$            | dual (primal) problem                                 |
|---------------------------------------|-------------------|-------------------------------------------------------|
| unique and<br>non-degenerate solution | $\iff$            | unique and<br>non-degenerate solution                 |
| unbounded solution                    | $\Longrightarrow$ | no feasible solutions                                 |
| no feasible solutions                 | $\Longrightarrow$ | unbounded solution <b>or</b><br>no feasible solutions |
| degenerate solution                   | $\iff$            | alternative solutions                                 |

#### Exercises on duality

▶ Formulate and solve graphically the dual of:

minimize 
$$z = 6x_1 + 3x_2 + x_3$$
  
subject to  $6x_1 - 3x_2 + x_3 \ge 2$   
 $3x_1 + 4x_2 + x_3 \ge 5$   
 $x_1, x_2, x_3 > 0$ 

- ▶ Then find the optimal primal solution
- ▶ Verify that the dual of the dual equals the primal

◆ロ → ◆御 → ◆ き → ◆ き → りへ○

#### Sensitivity analysis

- ▶ How does the optimum change when the right hand sides (resources, e.g.) change?
- ▶ When the objective coefficients (prices, e.g.) change?
- ▶ Assume that the basis *B* is optimal:

maximize 
$$z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N$$
  
subject to  $\mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \ge \mathbf{0}^m$ ,  $\mathbf{x}_N \ge \mathbf{0}^{n-m}$ 

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N$$

#### Changes in the right hand side coefficients

- ▶ Suppose **b** changes to  $\mathbf{b} + \Delta \mathbf{b}$
- ⇒ New optimal value:

$$z^{\text{new}} = \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} (\mathbf{b} + \Delta \mathbf{b}) = z + \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} \Delta \mathbf{b}$$

- ▶ The current basis is feasible if  $\mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) \geq 0$
- ▶ If not: negative values will occur in the right hand side
- ► The reduced costs are unchanged (negative, at optimum) ⇒ this can be resolved using the *dual simplex method*



Lecture 3

Applied Optimizatior

#### Changes in the right hand side coefficients

► Consider the linear program

minimize 
$$z = -x_1 - 2x_2$$
 subject to  $-2x_1 + x_2 \le 2$   $-x_1 + 2x_2 \le 7$  Draw graph!!  $x_1 \le 3$   $x_1, x_2 \ge 0$ 

▶ The optimal solution is given by

| basis                 | -z | $x_1$ | <i>x</i> <sub>2</sub> | $s_1$ | <b>s</b> <sub>2</sub> | <i>S</i> 3    | RHS |
|-----------------------|----|-------|-----------------------|-------|-----------------------|---------------|-----|
| <u></u>               | 1  | 0     | 0                     | 0     | 1                     | 2             | 13  |
| <i>x</i> <sub>2</sub> | 0  | 0     | 1                     | 0     | $\frac{1}{2}$         | $\frac{1}{2}$ | 5   |
| $x_1$                 | 0  | 1     | 0                     | 0     | Ō                     | $\bar{1}$     | 3   |
| $s_1$                 | 0  | 0     | 0                     | 1     | $-\frac{1}{2}$        | <u>3</u>      | 3   |

#### 4 ロ ト 4 団 ト 4 豆 ト 4 豆 ・ 夕 9 0 0 -

#### Changes in the right hand side coefficients

▶ Change the right hand side according to

$$\begin{array}{lll} \text{minimize} & z = & -x_1 & -2x_2 \\ \text{subject to} & & -2x_1 & +x_2 & \leq 2 \\ & & -x_1 & +2x_2 & \leq 7+\delta \\ & & x_1 & & \leq 3 \\ & & x_1, x_2 & \geq 0 \end{array}$$

► The change in the right hand side is given by  $\mathbf{B}^{-1}(0, \delta, 0)^{\mathrm{T}} = (\frac{1}{2}\delta, 0, -\frac{1}{2}\delta)^{\mathrm{T}} \Rightarrow \text{new optimal tableau:}$ 

| basis                 | -z | $x_1$ | <i>x</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <i>5</i> 3    | RHS                     |
|-----------------------|----|-------|-----------------------|-------|-----------------------|---------------|-------------------------|
| -z                    | 1  | 0     | 0                     | 0     | 1                     | 2             | $13 + \delta$           |
| <i>x</i> <sub>2</sub> | 0  | 0     | 1                     | 0     | $\frac{1}{2}$         | $\frac{1}{2}$ | $5 + \frac{1}{2}\delta$ |
| $x_1$                 | 0  | 1     | 0                     | 0     | Ō                     | 1             | 3                       |
| $s_1$                 | 0  | 0     | 0                     | 1     | $-\frac{1}{2}$        | . <u>3</u>    | $3-\frac{1}{2}\delta$   |

▶ The current basis is feasible if  $-10 \le \delta \le 6$ 

Lecture

Applied Optimization

#### Changes in the right hand side coefficients

▶ Suppose  $\delta = 8$ :

| basis                 | -z | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <i>5</i> <sub>3</sub> | RHS |
|-----------------------|----|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----|
| -z                    | 1  | 0                     | 0                     | 0     | 1                     | 2                     | 21  |
| <i>x</i> <sub>2</sub> | 0  | 0                     | 1                     | 0     | $\frac{1}{2}$         | 1/2                   | 9   |
| $x_1$                 | 0  | 1                     | 0                     | 0     | ō                     | $\overline{1}$        | 3   |
| $s_1$                 | 0  | 0                     | 0                     | 1     | $-\frac{1}{2}$        | <u>3</u>              | -1  |

- ► Dual simplex iteration:
- $lacktriangleright s_1 = -1$  has to leave the basis
- ► Find the smallest ratio between reduced costs (for non-basic columns) and (negative) elements in the "s<sub>1</sub>-row" (to stay optimal)
- ▶ s<sub>2</sub> will enter the basis **New optimal** tableau:

| basis                 | -z | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> | RHS |
|-----------------------|----|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----|
| -z                    | 1  | 0                     | 0                     | 2     | 0                     | 5                     | 19  |
| <i>x</i> <sub>2</sub> | 0  | 0                     | 1                     | 1     | 0                     | 2                     | 8   |
| $x_1$                 | 0  | 1                     | 0                     | 0     | 0                     | 1                     | 3   |
| <i>s</i> <sub>2</sub> | 0  | 0                     | 0                     | -2    | 1                     | -3                    | 2   |

#### Changes in the objective coefficients

- ▶ Suppose **c** changes to  $\mathbf{c} + \Delta \mathbf{c}$
- ▶ The new optimal value:

$$z^{\text{new}} = (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\text{T}} \mathbf{B}^{-1} \mathbf{b} = z + \Delta \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} \mathbf{b}$$

- ▶ The current basis is optimal if  $(\mathbf{c}_N + \Delta \mathbf{c}_N)^{\mathrm{T}} - (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \leq \mathbf{0}$
- ▶ If not: more simplex iterations to find the optimal solution



#### Changes in the objective coefficients

▶ Change the objective according to

$$\begin{array}{llll} \text{minimize} & z = & -x_1 & +(-2+\delta)x_2 \\ \text{subject to} & & -2x_1 & +x_2 & \leq 2 \\ & & -x_1 & +2x_2 & \leq 7 \\ & & x_1 & & \leq 3 \\ & & x_1, x_2 & \geq 0 \end{array}$$

▶ The changes in the reduced costs are given by  $-(\delta,0,0)\mathbf{B}^{-1}\mathbf{N}=(-\frac{1}{2}\delta,-\frac{1}{2}\delta)\Rightarrow$  new optimal tableau:

| basis | -z | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <b>s</b> <sub>1</sub> | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> | RHS          |
|-------|----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------|
| -z    | 1  | 0                     | 0                     | 0                     | $1-\frac{1}{2}\delta$ | $2-\frac{1}{2}\delta$ | $13-5\delta$ |
|       | 0  | 0                     | 1                     | 0                     | $\frac{1}{2}$         | $\frac{1}{2}$         | 5            |
| $x_1$ | 0  | 1                     | 0                     | 0                     | Ō                     | $\bar{1}$             | 3            |
| $s_1$ | 0  | 0                     | 0                     | 1                     | $-\frac{1}{2}$        | <u>3</u>              | 3            |

▶ The current basis is optimal if  $\delta \leq 2$ 

## Changes in the objective coefficients

▶ Suppose  $\delta = 4$ : new tableau:

| basis          | -z | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>s</i> <sub>1</sub> | <b>s</b> <sub>2</sub> | <i>s</i> <sub>3</sub> | RHS       |
|----------------|----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------|
| -z             | 1  | 0                     | 0                     | 0                     | -1                    | 0                     | <b>-7</b> |
|                | 0  | 0                     | 1                     | 0                     | $\frac{1}{2}$         | $\frac{1}{2}$         | 5         |
| $x_1$          | 0  | 1                     | 0                     | 0                     | Ō                     | $\bar{1}$             | 3         |
| s <sub>1</sub> | 0  | 0                     | 0                     | 1                     | $-\frac{1}{2}$        | <u>3</u><br>2         | 3         |

▶ Let  $s_2$  enter and  $x_2$  leave the basis. New optimal tableau:

| basis                 | -z | $x_1$ | $x_2$ | $s_1$ | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> | RHS |
|-----------------------|----|-------|-------|-------|-----------------------|-----------------------|-----|
| z                     | 1  | 0     | 2     | 0     | 0                     | 1                     | 3   |
| <i>s</i> <sub>2</sub> | 0  | 0     | 2     | 0     | 1                     | 1                     | 10  |
| $x_1$                 | 0  | 1     | 0     | 0     | 0                     | 1                     | 3   |
| <i>s</i> <sub>1</sub> | 0  | 0     | 1     | 1     | 0                     | 2                     | 8   |