# MVE165/MMG630, Applied Optimization Lecture 5 Shortest paths and network flow models

Ann-Brith Strömberg

2009-03-24



Lecture 5

Applied Optimization

#### Network models—examples

Many different problems can be formulated as graph or network flow models:

- ► Find the shortest/fastest connection from Johanneberg to Lindholmen
- ▶ Connect a number of base stations minimizing the total cost
- ▶ Find the maximum capacity in a given water pipeline network
- ► Find a time schedule (start and completion times) for activities in a project
- ► Find how much goods should be transported from each supplier to each point of demand, using which links in a transport system

•



Lecture 5

Applied Optimization

## Definitions and terminology

► A graph consists of a set N of nodes linked by a set A of (undirected) edges and/or (directed) arcs



- ▶ For many applications: distances (or costs)  $d_{ii}$  on the arcs
- ► A path is a sequence of arcs between two nodes



▶ A cycle/loop is a path that connects a node to itself



Lecture 5

Applied Optimization

## Definitions and terminology

► A connected graph has at least one path between each pair of nodes (example: an unconnected graph)



- ► A *tree* is a connected graph without cycles connecting a *subset* of the nodes.
- ► A spanning tree is a tree that connects all the nodes of a graph



## The shortest path problem

- ▶ Given: a network of nodes, arcs, and arc distances
- ▶ Find the shortest path from a source node to a destination node

Examples that can be formulated as shortest path problems:

- ▶ Find the shortest connection from Johanneberg to Lindholmen (using bus, tram, bike, car, or combinations, ...)
- ▶ Find most reliable route (failure probabilities for the arcs)
- ▶ Find the shortest routes for data on the internet
- ▶ Solve the three-jug puzzle (three buckets 8, 5, and 3 liters)

**•** 



Lecture 5 Applied Optimization

#### Example: Equipment replacement

- ▶ RentCar wants to find a replacement strategy for its cars for a 4-year planning period
- ► Each year, a car can be kept or replaced
- ▶ The replacement cost for each year and period is given in the table below
- ► Each car should be used at least 1 year and at most 3 years

| Equipment     | Replacement cost for |      |      |  |
|---------------|----------------------|------|------|--|
| obtained at   | # years in operation |      |      |  |
| start of year | 1                    | 2    | 3    |  |
| 1             | 4000                 | 5400 | 9800 |  |
| 2             | 4300                 | 6200 | 8700 |  |
| 3             | 4800                 | 7100 | _    |  |
| 4             | 4900                 |      |      |  |
|               |                      |      |      |  |

## Example: Equipment replacement

| Equipment     | Replacement cost for |      |      |  |
|---------------|----------------------|------|------|--|
| obtained at   | # years in operation |      |      |  |
| start of year | 1                    | 2    | 3    |  |
| 1             | 4000                 | 5400 | 9800 |  |
| 2             | 4300                 | 6200 | 8700 |  |
| 3             | 4800                 | 7100 |      |  |
| 4             | 4900                 |      | _    |  |



Lecture 5 Applied Optimization

## Example: Most reliable route

- ▶ Mr Q drives to work daily
- ▶ All road links he can choose for a path to work are patrolled by the police
- $\blacktriangleright$  It is possible to assign a probability  $p_{ij}$  of not being stopped by the police on link (i, j)
- ▶ He wants to find the "shortest" (safest?) path in the sense that the probability of being stopped is as low as possible
- maximize P(not being stopped)



 $\blacktriangleright$  Ex.  $1 \rightarrow 4$ : max $\{p_{12} \cdot p_{24}; p_{13} \cdot p_{34}\} = \max\{0.2 \cdot 0.35; 0.8 \cdot 0.3\}$ 

## Discrete dynamic programming methods

- ► Efficient methods for shortest path problems (and some other models)
- ▶ Expecially to find shortest paths from many to many nodes
- ▶ Linear programming can be used but is less efficient
- ▶ Functional notation
  - v[k] = length of shortest (most reliable) path from source node to node k
  - $\mathbf{v}[k] = \infty$  if no path exists



Lecture

Applied Optimization

## Example: shortest paths

▶ Shortest paths from node 1 to all other nodes





- v[1] = 0, v[2] = 5, v[3] = 4, v[4] = 6,  $v[5] = \infty$
- $x_{12}[1] = x_{13}[1] = x_{14}[1] = x_{24}[1] = x_{34}[1] = x_{52}[1] = x_{54}[1] = 0$
- $x_{12}[2] = 1, x_{13}[2] = x_{14}[2] = x_{24}[2] = x_{34}[2] = x_{52}[2] = x_{54}[2] = 0$
- $x_{13}[3] = 1, x_{12}[3] = x_{14}[3] = x_{24}[3] = x_{34}[3] = x_{52}[3] = x_{54}[3] = 0$
- $x_{13}[4] = x_{34}[4] = 1, x_{12}[4] = x_{14}[4] = x_{24}[4] = x_{52}[4] = x_{54}[4] = 0$
- ▶ No path exists from 1 to 5
- The arcs in the shortest paths from one node to all other (reachable) nodes forms a tree ((1,2), (1,3), and (3,4))
- ▶ If all nodes are reachable: shortest path tree is a spanning tree

#### Negative cycles



- ▶ A negative cycle is a cycle of negative total length
- $\Rightarrow$  Shortest path "length"  $\to -\infty$
- ⇒ Dynamic programming algorithms do usually not apply



Lecture 5

Applied Optimization

## Functional equations

- ► Principle of optimality: In a graph with no negative cycles, optimal paths have optimal subpaths
- ⇒ Functional equations for shortest path from node s to all other nodes in a graph with no negative cycles
  - $\mathbf{v}[s] = 0$
  - $\triangleright$   $v[k] = \min\{v[i] + c_{ik} : arc/edge(i, k) \text{ exists}\}$  for all  $k \neq s$





## Variants of functional equations

- ▶ Most reliable path (failure probability  $p_{ii} \in [0, 1]$  for arc (i, j)):
  - v[s] = 1 $\triangleright v[k] = \max\{v[i] \cdot p_{ik} : \operatorname{arc/edge}(i, k) \text{ exists } \} \text{ for all } k \neq s$
- ▶ Highest capacity path (capacity  $K_{ii} \ge 0$  on arc (i,j)):
  - $\triangleright v[s] = \infty$  $\triangleright v[k] = \max \{\min\{v[i]; K_{ik}\}: \text{ arc/edge } (i, k) \text{ exists } \}, k \neq s$
- ▶ Paths from all nodes to all other nodes in a graph with no negative cycles:
  - $\triangleright$  v[k, k] = 0 for all k $v[k,\ell] = \min \{c_{k\ell}; \{v[k,i] + v[i,\ell] : i \neq k,\ell\} \} \text{ for all } k \neq \ell$



◆ロト ◆部 ト ◆ き ト ◆ き ・ り へ ○

Lecture 5 Applied Optimization

## Algorithms for the shortest path problem: Dijkstra

Dijkstra's algorithm finds the shortest path between a source node s and node i if all distances on the arcs are non-negative.

- ► N = set of all nodes.
- ▶ Source node  $s \in N$
- $ightharpoonup c_{ii} = \text{distance on link from } i \text{ to } j \text{ for all } i, j \in N$
- $ightharpoonup c_{ii} = \infty$  if no direct link from i to j

**Step 0:**  $S := \{s\}, \ \overline{S} := N \setminus \{s\}, \ \text{and} \ v[i] := c_{si}, \ i \in N$ 

**Step 1:** (a) If  $\bar{S} = \emptyset$ , stop. Else find node k such that  $v[k] = \min_{i \in \bar{S}} v[i]$  $S := S \cup \{k\} \text{ and } \bar{S} := \bar{S} \setminus \{k\}$ 

- (b) For all  $i \in \overline{S}$  and  $i \in S$ : If  $v[j] > v[i] + c_{ij}$  set  $v[j] := v[i] + c_{ij}$  and pred(j) := i
- ▶ The vector *pred* keeps track of the predecessors
- ▶ Dijkstra's algorithm actually finds shortest paths from the source to all others nodes!

## Example: Dijkstra's algorithm

Find the shortest path from node 1 to all other nodes



Lecture 5 Applied Optimization

## Algorithms for the shortest path problem: Floyd-Warshall

- ▶ Floyd's algorithm computes shortest paths between each pair of nodes
- ▶ Negative distances are allowed but no negative cycles—but these can be detected
- ▶ Idea: Three nodes i, k, j and distances  $c_{ik}, c_{ki}$ , and  $c_{ii}$ .
- $i \rightarrow k \rightarrow j$  is a short-cut if  $c_{ik} + c_{ki} < c_{ii}$
- ▶ In each iteration 1...k, check whether  $c_{ii}$  can be improved by using the short-cut via k.
- ▶ Administration of the algorithm: Maintain two matrices per iteration,  $C_k$  for the distances and  $pred_k$  to keep track of the predecessor of each node

## Floyd-Warshall's algorithm

**Step 0:** Initialize D[0] and pred[0]

▶ D[k] := D[k-1], pred[k] := pred[k-1]

▶ For each element  $d_{ii}$  in D[k]: If  $d_{ik} + d_{ki} < d_{ii}$ , set  $d_{ii} := d_{ik} + d_{ki}$  and  $pred_{ii}[k] := k$ 

▶ Set k := k + 1

▶ If k > n stop, else repeat Step k

Find the shortest path from node 3 to all other nodes



Lecture 5

Applied Optimization

## Definition of general network flow problems

- ▶ A network consist of a set N of nodes linked by a set A of arcs
- ightharpoonup A distance  $d_{ii}$  is associated with each arc
- $\triangleright$  Each node i in the network has a net demand  $b_i$
- $\blacktriangleright$  Each arc has an (unknown) amount of flow  $x_{ii}$  that is restricted by a maximum capacity  $u_{ii} \in [0, \infty]$
- ▶ The flow through each node must be balanced
- ▶ A graph is a special case of a network
- ▶ A network flow problem can be formulated as a linear program

#### A network formulation of the shortest path problem

Find the shortest path from node s to node t:

- ▶ Let for each arc  $x_{ij}$  be the flow on arc (i, j)
- $\triangleright$   $x_{ii} = 1$  if arc (i, j) is in the shortest path and  $x_{ij} = 0$  otherwise
- ► Linear programming formulation:

min 
$$\sum_{(i,j)\in A} d_{ij}x_{ij}$$
,  
s.t.  $\sum_{j} x_{sj} = 1$ ,  
 $\sum_{j} x_{jt} = 1$ ,  
 $\sum_{i} x_{ik} - \sum_{j} x_{kj} = 0$ ,  $k \neq s, t$ , (\*)  
 $x_{ij} \geq 0$ .

▶ The constraints (\*) are flow balance constraints



Lecture 5 Applied Optimization

### Maximum flow models

- ▶ Consider a district heating network with pipelines that transports energy from a number of sources to a number of destinations
- ▶ The network has several branches and intersections
- ▶ Pipe segment (i,j) has a maximum capacity of  $K_{ii}$  units of flow per time unit
- ► A pipe can be one- or bidirectional
- ▶ What is the maximum total amount of flow per time unit through this network?
- ▶ Another application of maximum flow models is evacuation of buildings

## Linear programming formulation of maximum flow problem

• Graph: G = (V, A, K) (nodes, directed arcs, arc capacities)

[Primal] 
$$\max_{s.t.} v,$$

$$-\sum_{j:(s,j)\in A} x_{sj} + v = 0,$$

$$\sum_{j:(j,t)\in A} x_{jt} - v = 0,$$

$$\sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj} = 0, \quad k \in V \setminus \{s,t\}$$

$$x_{ij} \leq K_{ij}, \quad (i,j) \in A$$

$$x_{ij} \geq 0, \quad (i,j) \in A$$

[Dual] min 
$$\sum_{\substack{(i,j)\in A\\\\\text{s.t.}}} K_{ij}\gamma_{ij},$$
s.t. 
$$-\pi_i + \pi_j + \gamma_{ij} \geq 0, \quad (i,j) \in A$$

$$\pi_s - \pi_t \geq 1,$$

$$\gamma_{ij} \geq 0, \quad (i,j) \in A$$

Lecture 5 Applied Optimization

#### Minimun cut

- ▶ A cut is a set of arcs which, when deleted, interrupt all flow in the network between the source s and the sink t
- ▶ The cut capacity equals the sum of capacities on all the arcs through the cut
- ▶ Finding the minimum cut is equal to solve the dual of the max flow problem
- ▶ Theorem: value of maximum flow = value of minimum cut (strong duality)

#### Solving the maximum flow problem

Alternative 1: Enumerate all possible cuts and select smallest But how do we then find the actual flow on each arc? Also, a graph may have very many cuts

Alternative 2: Basic idea of flow algorithm: Find paths with positive capacity through the network Push as much flow as possible on these without violating the capacity constraints Repeat until no capacity left

Administration: For each direction of an arc, keep track of the residuals (remaining capacities)  $(\overline{K}_{ii}, \overline{K}_{ii})$  each time flow is pushed along the arc



Lecture 5

Applied Optimization

## Max Flow Algorithm

- **Step 1: Initialize** residuals  $(c_{ii}, c_{ii}) = (\bar{K}_{ii}, \bar{K}_{ii}), i :=$ source, goto 2
- **Step 2:** Find  $S_i$ , set of nodes reachable from i with  $c_{ii} > 0$ If  $S_i = \emptyset$  goto 4. Else goto 3
- **Step 3:** Choose node  $k \in S_i$  with maximum  $c_{ik}$ If k = n goto 5. Else set i := k and goto 2
- **Step 4:** Getting stuck. **Backtrack** to previous node and goto 2
- **Step 5: Breakthrough path found.** Calculate max flow along the path and update residuals
- Step 6: Solution. Sum up flows on all breakthrough path Find flow on each arc by considering the residuals