Definitions and terminology

» A graph consists of a set N of nodes linked by a set A of
(undirected) edges and/or (directed) arcs

MVE165/MMG630, Applied Optimization

Lecture 5
Shortest paths and network flow models

» For many applications: distances (or costs) djj on the arcs
> A path is a sequence of arcs between two nodes

» A cycle/loop is a path that connects a node to itself

Network models—examples Definitions and terminology

Many different problems can be formulated as graph or network
flow models:

Ann-Brith Stromberg

2009-03-24

> A connected graph has at least one path between each pair of
nodes (example: an unconnected graph)

[>

> A tree is a connected graph without cycles connecting a

» Find the shortest/fastest connection from Johanneberg to
Lindholmen

» Connect a number of base stations minimizing the total cost

» Find the maximum capacity in a given water pipeline network

» Find a time schedule (start and completion times) for subset of the nodes.
activities in a project » A spanning tree is a tree that connects all the nodes of a
graph

» Find how much goods should be transported from each
supplier to each point of demand, using which links in a © © © @
transport system (s

> ...

Lecture 5 Applied Optimization Lecture 5 Applied Optimization

The shortest path problem

» Given: a network of nodes, arcs, and arc distances

» Find the shortest path from a source node to a destination
node

Examples that can be formulated as shortest path problems:

» Find the shortest connection from Johanneberg to Lindholmen
(using bus, tram, bike, car, or combinations, ...)

» Find most reliable route (failure probabilities for the arcs)
» Find the shortest routes for data on the internet
» Solve the three-jug puzzle (three buckets 8, 5, and 3 liters)

> ...

Lecture 5 Applied Optimization

Example: Equipment replacement

» RentCar wants to find a replacement strategy for its cars for a
4-year planning period
» Each year, a car can be kept or replaced

» The replacement cost for each year and period is given in the
table below

» Each car should be used at least 1 year and at most 3 years

Equipment Replacement cost for
obtained at # years in operation
start of year 1 2 3
1 4000 5400 9800
2 4300 6200 8700
3 4800 7100 —
4 4900 — —

Lecture 5 Applied Optimization

Example: Equipment replacement

Equipment
obtained at
start of year

Replacement cost for
years in operation

1 2 3

1

2
3
4

4000 5400 9800
4300 6200 8700
4800 7100 —
4900 — —

Cheapest path from 1 to 5: 1 — 3 — 5. Cost: 12500

Lecture 5 Applied Optimization

Example: Most reliable route

> Mr Q drives to work daily
> All road links he can choose for a path to work are patrolled

by the police

> It is possible to assign a probability pj; of not being stopped
by the police on link (i,)

» He wants to find the “shortest” (safest?) path in the sense
that the probability of being stopped is as low as possible

» maximize P(not being stopped)

» Ex. 1 — 4: max{pi2 - poa; p13 - p3a} = max{0.2-0.35;0.8 - 0.3}

Lecture 5 Applied Optimization

Discrete dynamic programming methods Negative cycles

v

Efficient methods for shortest path problems (and some other
models)

Gij

v

Expecially to find shortest paths from many to many nodes

v

Linear programming can be used but is less efficient

» Functional notation

» v[k] = length of shortest (most reliable) path from source

node to node k » A negative cycle is a cycle of negative total length

» v[k] = oo if no path exists = Shortest path “length” — —o0

1 if arc/edge (i,j) is part of the optimal = Dynamic programming algorithms do usually not apply
> x;jlk] = path from source node to node k

0 otherwise

Lecture 5 Applied Optimization Lecture 5 Applied Optimization

Example: shortest paths Functional equations

> Shortest paths from node 1 to all other nodes

» Principle of optimality: In a graph with no negative cycles,

\ M optimal paths have optimal subpaths
4 3) = Functional equations for shortest path from node s to all
other nodes in a graph with no negative cycles
2
» v[s]=0

v[1] =0, v[2] =5, v[3] =4, v[4] =6, v[5] = 00 > v[k] = min{v[i] + ci : arc/edge (i, k) exists } for all k # s
x12[1] = x13[1] = x14[1] = x24[1] = x34[1] = X52[1] = x54[1] =0
X12 [2] = 1, X13 [2] =X14 [2] =X24 [2] = X34 [2] = X52 [2] = X54 [2] =0 o 2 o @—C’QQ
X13[3] = 1, X12[3] :X14[3] =X24[3] = X34 [3] = X52 [3] :X54[3] =0 \7\
1341 = xsa[8]= 1, x12[4] = x1[4] = xo4 4] = x52[4] = x5[4] =0) 3)
No path exists from 1 to 5 e e
The arcs in the shortest paths from one node to all other 2

(reachable) nodes forms a tree ((1,2), (1,3), and (3,4))
» If all nodes are reachable: shortest path tree is a spanning tree

Lecture 5 Applied Optimization Lecture 5 Applied Optimization

vV VvV Vv Vv Vvy

Variants of functional equations Example: Dijkstra's algorithm

» Most reliable path (failure probability p;; € [0,1] for arc (i,/)):

» v[s]=1 Find the shortest path from node 1 to all other nodes
» v[k] = max{v[i] - pi : arc/edge (i, k) exists } for all k # s

» Highest capacity path (capacity Kjj > 0 on arc (i,j)):

Cij
> v[s] =00
» v[k] = max{min{v[i]; Kk} : arc/edge (i, k) exists }, k # s
» Paths from all nodes to all other nodes in a graph with no
negative cycles:
» v[k, k] = 0 for all k
> vk, €] = min{cke; {v[k,i] + v[i, €] : i # k,£}} for all k # £

Algorithms for the shortest path problem: Dijkstra Algorithms for the shortest path problem: Floyd—Warshall

Dijkstra’s algorithm finds the shortest path between a source node _ _
s and node i if all distances on the arcs are non-negative. » Floyd's algorithm computes shortest paths between each pair
of nodes
» N = set of all nodes,
» Source node s € N » Negative distances are allowed but no negative cycles—but

» ¢;jj = distance on link from i to j for all i,j € N these can be detected

» cjj = oo if no direct link from i to j » Idea: Three nodes i, k,j and distances ci, cxj, and cj.
Step 0: S:={s}, S:=N\{s}, and v[i] ;== cs, i €N » i — k — jis a short-cut if cix + ¢k < ¢jj
Step 1: (a) If S =0, stop. Else find node k such that v[k] = min; .3 v[i] _))
S:=SU{k}and 5:=5\ {k} » In each iteration 1... k, check whether c;; can be improved by
(b) ForalljeSandi€S: using the short-cut via k.

If v[j] > v[i] + ¢j set v[j] := v[i] + ¢; and pred(j) := i

» The vector pred keeps track of the predecessors

» Administration of the algorithm: Maintain two matrices per
iteration, Cj for the distances and pred) to keep track of the

» Dijkstra’s algorithm actually finds shortest paths from the predecessor of each node

source to all others nodes!

Lecture 5 Applied Optimization Lecture 5 Applied Optimization

A network formulation of the shortest path problem

Floyd—Warshall’s algorithm

Step 0: Initialize D[0] and pred[0]
Step k: » D[k] := D[k — 1], pred[k] := pred[k — 1] Find the shortest path from node s to node t¢:

> For each element dj in D[k]: » Let for each arc x;; be the flow on arc (i,)

If dix + dij < djj, set djj := dix + dij and pred;j[k] := k

» Set k =k+1 » xjj = 1 if arc (i,j) is in the shortest path and x;jj = 0 otherwise

» If k > n stop, else repeat Step k > Linear programming formulation:
Find the shortest path from node 3 to all other nodes min > dixy,
(ij)eA
s.t. E_] ij = ,

k#s,t, (%)

v Il
oo -

10 10 (s) 20 Xk = 2 ’iz
" (460

» The constraints (x) are flow balance constraints

Lecture 5 Applied Optimization Lecture 5 Applied Optimization

Definition of general network flow problems Maximum flow models

» A network consist of a set N of nodes linked by a set A of arcs

» Consider a district heating network with pipelines that
transports energy from a number of sources to a number of
destinations

v

A distance djj is associated with each arc

v

Each node j in the network has a net demand b; » The network has several branches and intersections
» Pipe segment (/,/) has a maximum capacity of Kj; units of
» Each arc has an (unknown) amount of flow x;; that is flow per time unit

restricted by a maximum capacity uj; € [0, oc] > A pipe can be one- or bidirectional

» What is the maximum total amount of flow per time unit
through this network?

v

The flow through each node must be balanced

A graph is a special case of a network > Another application of maximum flow models is evacuation of
buildings

v

v

A network flow problem can be formulated as a linear program

Lecture 5 Applied Optimization Lecture 5 Applied Optimization

Linear programming formulation of maximum flow problem Solving the maximum flow problem

» Graph: G = (V, A, K) (nodes, directed arcs, arc capacities)

[Primal] max v, Alternative 1: Enume.rate all possible cuts and select smallest
But how do we then find the actual flow on each arc?

s.t. — Z x5 +v = 0,
Also, a graph may have very many cuts

Ji(s.j)EA
xjt -V = 05
J:U,t)EA Alternative 2: Basic idea of flow algorithm:
Z Xik — Z xj = 0, keV\{st} Find paths with positive capacity through the network
ix(ik)eA J:(kj)EA Push as much flow as possible on these without violating the
xj < Kij, (i,j))€A capacity constraints
xj > 0, (i,j)€A Repeat until no capacity left

Dual] min Kiivii,
[] Z i Administration: For each direction of an arc, keep track of the

(i)eA . . oy e T . .
st. —mi+mi+y > 0, (ij)€A residuals (remaining capacities) (K, Kji) each time flow is
" - 7 bl
Te—m > 1 pushed along the arc
- H
i 2 0, (h)€eA

Step 1: Initialize residuals (cjj, ;i) = (Kj;, Kii), i :=source, goto 2
> A cutis a set of arcs which, when deleted, interrupt all flow in (e i) = (Ky, Ki)

the network between the source s and the sink t Step 2: Find S;, set of nodes reachable from i with ¢;; > 0
If S; = () goto 4. Else goto 3

» The cut capacity equals the sum of capacities on all the arcs

through the cut Step 3: Choose node k € S; with maximum ¢j

If Kk = n goto 5. Else set i := k and goto 2

» Finding the minimum cut is equal to solve the dual of the max Step 4: Getting stuck. Backtrack to previous node and goto 2

flow problem
Step 5: Breakthrough path found. Calculate max flow along the

path and update residuals
» Theorem: value of maximum flow = value of minimum cut

(strong duality) Step 6: Solution. Sum up flows on all breakthrough path
Find flow on each arc by considering the residuals

Lecture 5 Applied Optimization Lecture 5 Applied Optimization

