MVE165/MMG630, Applied Optimization Lecture 6 Minimum cost flow models and algorithms

Ann-Brith Strömberg

2009-03-27

4ロト 4個ト 4厘ト 4厘ト 種 めなの

Lecture 6

Applied Optimizatio

Transportation models: An example

- ► MG Auto has three plants, LA, Detroit, New Orleans, and two distribution centers, Denver and Miami
- ► Capacities of the plants: 1000, 1500, and 1200 cars
- ▶ Demands at distributions centers: 2300 and 1400 cars
- ▶ Transportation cost per car between plants and centers:

	Denver	Miami
LA	\$80	\$215
Detroit	\$100	\$108
New Orleans	\$102	\$68

Find the cheapest shipping schedule to satisfy the demand

4□ > 4□ > 4 = > 4 = > = 9

Linear programming formulation of MG Auto

Variables: x_{ij} = number of cars sent from plant i to distribution center j

$$\min z = 80x_{11} + 215x_{12} + 100x_{21} + 108x_{22} + 102x_{31} + 68x_{32}$$

s.t.
$$x_{11} + x_{12} = 1000$$
 (LA)
 $x_{21} + x_{22} = 1500$ (Detr)
 $x_{31} + x_{32} = 1200$ (NO)

$$x_{11}$$
 $+x_{21}$ $+x_{31}$ $=$ 2300 (Den) x_{12} $+x_{22}$ $+x_{32}$ $=$ 1400 (Mi)

$$x_{11}, \quad x_{12}, \quad x_{21}, \quad x_{22}, \quad x_{31}, \quad x_{32} \geq 0$$

◆ロト ◆昼 ト ◆ 星 ト ◆ 星 ・ 夕 Q (*)

Lecture

Applied Optimization

Definition of the transportation model

- ▶ m sources and n destinations \Leftrightarrow **nodes**
- $ightharpoonup a_i = amount of supply at source (node) i$
- $ightharpoonup b_j = amount of demand at destination (node) j$
- ▶ **Arc** (i,j) \Leftrightarrow connection from source i to destination j
- $ightharpoonup c_{ij} = \text{cost per unit of flow on arc } (i,j)$
- **Variables:** $x_{ij} = \text{amount of goods shipped on arc } (i, j)$
- **Objective:** find $x_{ij} \ge 0$ such that the total cost is minimized while satisfying all supply and demand restrictions

Linear programming transportation model

$$\begin{array}{lll} \min z := & \displaystyle \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\ \text{s.t.} & \displaystyle \sum_{j=1}^{n} x_{ij} & \leq & a_{i}, & i=1,\ldots,m \\ & \displaystyle \sum_{i=1}^{m} x_{ij} & \geq & b_{j}, & j=1,\ldots,n \\ & & \displaystyle x_{ij} & \geq & 0, & i=1,\ldots,m, & j=1,\ldots,n \end{array}$$

- ▶ Feasible solutions exist *if and only if* $\sum_i a_i \ge \sum_j b_j$
- ► The constraint matrix has special properties (totally unimodular) ⇒ integer solutions in extreme points of the feasible polyhedron
- ► This property holds for all problems that can be formulated as linear flows in networks

Lecture 6

Applied Optimizatior

Further details of the transportation model

- ► The transportation model is a **special case** of linear programming.
- ▶ Representation in a transportation tableau:

	Dei	nver	Mi	ami	Supply
LA		\$80		\$215	
	<i>x</i> ₁₁		<i>x</i> ₁₂		1000
Detroit		\$100		\$108	
	x ₂₁		X ₂₂		1500
New Orleans		\$102		\$68	
	<i>x</i> ₃₁		<i>X</i> 32		1200
Demand	2300		1400		•

Optimal solution of the MG Auto model

	Denver		Miami		Supply
LA		\$80		\$215	
	1000		0		1000
Detroit		\$100		\$108	
	1300		200		1500
New Orleans		\$102		\$68	
	0		1200		1200
Demand	2300		1400		•

- ▶ Solution method: A special version of the simplex method:
- ⇒ Equality constraints are required

ro 6 Applied On

Further details of the transportation model

What if total amount of demand \neq total amount of supply? $(\sum_i a_i > \sum_j b_j \text{ (feasible) or } \sum_i a_i < \sum_j b_j \text{ (infeasible))}$

- \Rightarrow **Balance** the model by dummy source (m+1) or destination (n+1)
- ▶ Suppose $\sum_i a_i > \sum_i b_j \Rightarrow \text{Let } b_{n+1} := \sum_{i=1}^m a_i \sum_{i=1}^n b_i$
- ⇒ **Balanced** transportation model—equality constraints

$$\min z := \sum_{i=1}^{m} \sum_{j=1}^{n+1} c_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{n+1} x_{ij} = a_{i}, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} x_{ij} = b_{j}, \quad j = 1, ..., n+1$$

$$x_{ij} \geq 0, \quad i=1, ..., m, j=1, ..., n+1$$

イロト 4回ト 4 重ト 4 重ト 9 9 0 0 1

Lecture 6

Applied Optimization

Minimum cost flow in a general network: An example

- ► Two paper mills: Holmsund and Tuna
- ▶ Three saw mills: Silje, Graninge and Lunden
- ▶ Two storage terminals: Norrstig and Mellansel

Facility	Supply (m ³)	Demand (m ³)
Silje	2400	
Graninge	1800	
Lunden	1400	
Holmsund		3500
Tuna		2100
		\sim

ture 6

applied Optimizatio

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りへで

4□ ト 4回 ト 4 重 ト 4 重 ト 9 9 0 ○

Minimum cost flow in a general network: An example

► Transportation opportunities:

From	То	Price/m ³	Capacity (m^3)
Silje	Norrstig	20	900
Silje	Mellansel	26	1000
Silje	Holmsund	45	1100
Graninge	Norrstig	8	700
Graninge	Mellansel	14	900
Graninge	Holmsund	37	600
Graninge	Tuna	22	600
Lunden	Mellansel	32	600
Lunden	Tuna	23	1000
Norrstig	Holmsund	11	1800
Norrstig	Mellansel	9	1800
Mellansel	Norrstig	9	1800
Mellansel	Tuna	9	1800

Minimum cost flow in a general network: An example

- ▶ Objective: Minimize transportation costs
- Satisfy demand
- ▶ Do not exceed the supply
- ▶ Do not exceed the transportation capacities
- ► An optimal solution

Lecture 6

Applied Optimization

Minimum cost flow in a general network: An example

```
20x_{SN} + 26x_{SM} + 45x_{SH} + 8x_{GN} + 14x_{GM}
             +37x_{GH} + 22x_{GT} + 32x_{LM} + 23x_{LT} + 11x_{NH}
             +9x_{NM}+9x_{MN}+9x_{MT}
subject to
                                                                             (Silje)
                                   -x_{SN}-x_{SM}-x_{SH}
                                                                  -1800
                                                                             (Graninge)
                            -x_{GN} - x_{GM} - x_{GH} - x_{GT}
                                                                  -1400
                                                                             (Lunden)
                                            -x_{LM}-x_{LT}
                      x_{SN} + x_{GN} + x_{MN} - x_{NM} - x_{NH}
                                                                             (Norrstig)
             x_{SM} + x_{LM} + x_{GM} + x_{NM} - x_{MN} - x_{MT}
                                                                             (Mellansel)
                                                                             (Holmsund)
                                      x_{SH} + x_{GH} + x_{NH}
                                                                    2100
                                                                             (Tuna)
                                                   XSN
                                                                     1000
                                                    x_{SM}
                                                                     1100
                                                    XsH
                                                                     700
                                                                     900
                                                    x_{GH}
                                                                     600
                                                    x_{LM}
                                                                     1000
                                                    x_{LT}
                                                                     1800
                                                                     1800
                                                   XNM
                                                                    1800
                                                    x_{MN}
                                                   XMT
```

▶ The columns \mathbf{A}_j of the equality constraint matrix $(\mathbf{A}\mathbf{x} = \mathbf{b})$ have one 1-element, one -1-element; the remaining elements are 0

◆ロ ト ◆ 部 ト ◆ 車 ト ◆ 車 ・ 夕 へ ○

The transportation problem: primal and dual problems

[Primal]

$$\min z := \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$
 subject to
$$\sum_{j=1}^n x_{ij} = a_i, \quad i=1,\ldots,m$$

$$\sum_{i=1}^m x_{ij} = b_j, \quad j=1,\ldots,n$$

$$x_{ij} \geq 0, \quad i=1,\ldots,m, j=1,\ldots,n$$

[Dual]

$$\max w := \sum_{i=1}^m a_i u_i + \sum_{j=1}^n b_j v_j$$
 subject to
$$u_i + v_j \leq c_{ij}, \quad i=1,\ldots,m, j=1,\ldots,n$$

Lecture 6

Applied Optimization

The Simplex algorithm for transportation problems (generalized for general minimum cost flows in Ch. 10.7)

- ▶ The algorithm follows the steps of the Simplex method
- ▶ Transportation tableau instead of simplex tableau
- ▶ The special structure allows for simpler operations
- ▶ As with the Simplex method: First find a feasible solution
- ▶ Iteratively improve this solution with pivot operations until an optimal solution is found

The transportation algorithm:

- 1. Find a feasible solution
- 2. Find the *entering variable*: use simplex *optimality condition* If optimality condition holds: stop. Else go to step 3
- 3. Find the *leaving variable*: use *simplex feasibility condition* Go to step 2

Step 1: Finding a feasible solution

► The Northwest-corner method

Cost for this solution:

$$10 \cdot 5 + 2 \cdot 10 + 7 \cdot 5 + 9 \cdot 15 + 20 \cdot 5 + 18 \cdot 10 = 520$$

- ▶ The nonzero variables are basic variables
- ▶ A basis for a network flow problem forms a tree in the corresponding graph
- ▶ Draw this graph!

4□ > 4ⓓ > 4ಠ > 4ಠ > ७ €

Lecture 6

Applied Optimizati

Step 2: Finding an entering variable

- Reduced cost computations: $\overline{\mathbf{c}}$ (Recall, lecture 3: $\overline{c}_j = c_j \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_j$)
- ▶ Here: $\overline{c}_{ii} = c_{ii} u_i v_i$
- ▶ Basic variables: $\overline{c}_{ij} = 0 \Rightarrow \text{values for } u_i \text{ and } v_i$
- Non-basic variables: $\overline{c}_{ij} < 0 \Rightarrow x_{ij}$ candidate for entering the basis

multipliers $v_1 = 10$ $v_2 = 2$ Supply $v_3 = 4$ $v_4 = 15$ 11 10 $u_1 = 0$ 10 15 20 25 $u_2 = 5$ 18 10 10 $u_3 = 3$ 15 15 15 Demand

Step 2: Finding an entering variable

• Here: $\overline{c}_{ij} = c_{ij} - u_i - v_j$ \overline{c}_{ij}

multipliers	v ₁	= 10	<i>v</i> ₂ :	= 2	<i>V</i> 3	= 4	v ₄ =	= 15	Supply
		10		2		20		11	
$u_1 = 0$	5		10			16		-4	15
		12		7		9		20	
$u_2 = 5$		-3	5		15		5		25
		4		14		16		18	
$u_3 = 3$ Demand		-9		9		9	10		10
Demand	5		15		15		15		•

 \triangleright Entering variable: x_{31}

4 ロ ト 4 昼 ト 4 昼 ト - 夏 - 夕 Q (や

Lecture 6

Applied Optimization

Step 3: Finding the leaving variable

- ▶ One of the basic variables has to leave the basis
- Select the variable according the the simplex feasibility condition $(x_{ij} \ge 0 \text{ for all } i, j)$
- $> x_{31} := \Theta \Rightarrow$

A cycle in the graph: DRAW!

▶ $x_{ij} \ge 0 \Rightarrow \Theta \le 5 \Rightarrow \text{Choose } \Theta = 5$

Update variable values

- ▶ A degenerate solution: basic variable $x_{22} = 0$
- ▶ Update also dual solution u_i & v_j such that $\overline{c}_{ij} = 0$ for basic variables $(\overline{c}_{31} = c_{31} u_3 v_1 = 0 \text{ but } \overline{c}_{11} = c_{11} u_1 v_1 = 9 > 0)$

multipliers	v_1	= 1	<i>v</i> ₂ :	= 2	<i>V</i> 3	= 4	<i>v</i> ₄ =	= 15	Supply
		10		2		20		11	
$u_1 = 0$		9	15			16		-4	15
		12		7		9		20	
$u_2 = 5$		6	0		15		10		25
		4		14		16		18	
$u_3 = 3$	5			9		9	5		10
Demand	5	•	15		15	•	15	•	

- \triangleright Entering variable: x_{14}
- Continue on the board ...

4 □ ▶	∢ /□ ▶	→ = →	∢ ≡ ▶	3	90 Q Q

Lecture 6

Applied Optimization

The assignment model

- ► A special case of the transportation model
- ► Given *n* persons and *n* jobs
- ▶ Given further the cost c_{ij} of assigning person i to job j
- ▶ Binary variables $x_{ij} = 1$ if person i does job j and $x_{ij} = 0$ otherwise
- ► Find the cheapest assignment of persons to jobs such that all jobs are done

min
$$\sum_{ij} c_{ij} x_{ij}$$

s.t. $\sum_{j} x_{ij} = 1 \quad \forall i$
 $\sum_{i} x_{ij} = 1 \quad \forall j$
 $x_{ii} \geq 0 \quad \forall i$

► The optimal solution is binary (due to the totally unimodular constraint matrix)

An assignment example

- ▶ 3 children: John, Karen and Terri
- ▶ 3 tasks: mow, paint and wash.
- ▶ Given further a "cost" (time, uncomfort,...) for each combination of child/task
- ▶ How should the parents distribute the tasks to minimize the cost?

	Mow	Paint	Wash
John	15	10	9
Karen	9	15	10
Terri	10	12	8

- ▶ Choose exactly one element in each row and one in each column
- ▶ What if there are more tasks than children or vice versa?

Lecture 6 Applied Optimization

