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Transportation models: An example

» MG Auto has three plants, LA, Detroit, New Orleans, and two
distribution centers, Denver and Miami

» Capacities of the plants: 1000, 1500, and 1200 cars

» Demands at distributions centers: 2300 and 1400 cars

» Transportation cost per car between plants and centers:

Denver Miami
LA $80 $215
Detroit $100 $108
New Orleans  $102 $68

» Find the cheapest shipping schedule to satisfy the demand
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Linear programming formulation of MG Auto

» Variables: xj;; = number of cars sent from plant i to
distribution center j

min z= 80x71+215x15+100x21+108x20+102x31+68x32

s.t. X111 +x12 = 1000 (LA)
X1 +X22 = 1500 (Detr)
x31 +x3p = 1200 (NO)
X11 +Xxo1 +Xx31 = 2300 (Den)
X12 +x22 +x32 = 1400 (Mi)
X11,  X12,  Xo1, X2,  X31, X322 > 0
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Definition of the transportation model

» m sources and n destinations < nodes

a; = amount of supply at source (node) /

bj = amount of demand at destination (node) j

Arc (i,j) < connection from source i to destination j
cij = cost per unit of flow on arc (i,))

Variables: x;j = amount of goods shipped on arc (i, )
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Objective: find x;; > 0 such that the total cost is minimized
while satisfying all supply and demand restrictions
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Linear programming transportation model Optimal solution of the MG Auto model

m n
minz ‘= Cii X Denver Miami Supply
;; o LA $80 §215
n ) 1000 0 1000
st 2% < @, i=1..,m  (supply) Detroit $100 $108
=1 1300 200 1500
ZXU > by, j=1,...,n (demand) New Orleans $102 $68
i1 0 1200 1200
xj > 0, i1=1,....m, j=1,...,n Demand 2300 1400
» Feasible solutions exist if and only if >.iai > ZJ- b;
» The constraint matrix has special properties (totally > Solution method: A special version of the simplex method:
unimodular) = integer solutions in extreme points of the = Equality constraints are required
feasible polyhedron
» This property holds for all problems that can be formulated as
linear flows in networks

Further details of the transportation model Further details of the transportation model

» What if total amount of demand # total amount of supply?
(Xoiai > > bj (feasible) or }>;ai < 37 bj (infeasible))

» The transportation model is a special case of linear

. L m n
programming. minz:= 357, j=1 CijXij
. .t : i < oI =1,...
» Representation in a transportation tableau: st Zf,ﬁl X =an ! Lowoym
o Yoilyxij > by, j=1,...,n
Denver Miami Supply xj > 0, i=1,....mj=1,...,n
LA $80 $215 .
i1 X1 1000 = Balance the model by dummy source (m + 1) or destination
Detroit $100 $108 (n+1) _ )
X21 X292 1500 > Suppose Zi aj > Zj bj = Let bn+1 = Ei:l ai — Zj:l bj
New Orleans $102 $68 = Balanced transportation model—equality constraints
X31 X32 1200 minz:= Y., J"ill CijXij
Demand 2300 1400 .t Zj"ill Xj = an i=1,....m
Z:’ilxij = bj, j=1...,n+1
xj > 0, i=l,...,m,j=1,...,nt




Minimum cost flow in a general network: An example Minimum cost flow in a general network: An example

» Two paper mills: Holmsund and Tuna

» Three saw mills: Silje, Graninge and Lunden

» Two storage terminals: Norrstig and Mellansel
Facility Supply (m®) Demand (m®)
Silje 2400
Graninge 1800
Lunden 1400
Holmsund 3500
Tuna

Objective: Minimize transportation costs

Satisfy demand

Do not exceed the supply

Do not exceed the transportation capacities

vV vV.v v VY

An optimal solution
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Minimum cost flow in a general network: An example Minimum cost flow in a general network: An example
» Transportation opportunities: T s o g - e
+9x, + 9x, + 9x,

From To Price/m3  Capacity (m3) sbjectto o e = xsm —xsw = e (s

p— " — X — X — X — X = —_ ranlnge
Silje Norrstig 20 900 . G”+ i (Lunden)

. X X, X — X — X = orrs lg

Silje Mellansel 26 1000 xsm + Xt + X + 5 YS”N” . wr - ol (Mclansel)

X X X = olmsun
SII_Je Holmsund 45 1100 xf,-: +(;rLG7’:’<+ xnl,,vi : Z;gg (Tuna)
Graninge  Norrstig 8 700 0 < o < 1w
. 0 X 1100
Graninge Mellansel 14 900 0 < xen 2 700
. < x <

Graninge  Holmsund 37 600 VI w2

Graninge Tuna 22 600 0 § o é pors

Lunden  Mellansel 32 600 o a2 e

Lunden  Tuna 23 1000 o S M 2 i

Norrstig ~ Holmsund 11 1800 0 = wro< o 180

Norrsti Mellansel 9 1800 ) ) .

& : » The columns A; of the equality constraint matrix (Ax = b)
Mellansel  Norrstig 9 1800 / .
have one 1-element, one —1-element; the remaining elements

Mellansel Tuna 9 1800 &

are 0



The transportation problem: primal and dual problems Step 1: Finding a feasible solution

[Primal] » The Northwest-corner method
m " Supply
minz:= > Y cjxj 10 2 20 11
i=tj=1 5 — 10 15
. oA i 12| | 7 9 20
subject to J-E_;XU ai, I=1,....m e Ll15 51| s o5
m 4 14 16| | 18
ZX,'J' = bj j=1,...,n 10 10
i=1 Demand 5 15 15 15
xjo 2 0 i=le,my=1 0 » Cost for this solution:
[Dual] 10-54+2-10+7-54+9-15+20-5+18-10 = 520
m n » The nonzero variables are basic variables
max w := Z ajui + Z bjv; > A basis for a network flow problem forms a tree in the
i=1 j=1 corresponding graph

subject to u; vi < ¢, i=1...mj=1,....n
) i+ i S v M) =2y » DRAW THIS GRAPH!
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The Simplex algorithm for transportation problems Step 2: Finding an entering variable

(generalized for general minimum cost flows in Ch. 10.7)

» Reduced cost computations: €
(Recall, lecture 3: ¢; = ¢; — ¢;BlA))

» The algorithm follows the steps of the Simplex method > Here: T = ¢j — uj — vj
» Transportation tableau instead of simplex tableau > Basic variables: ¢; = 0 = values for u; and v;
> The special structure allows for simpler operations » Non-basic variables: ¢ < 0 = x;; candidate for entering the
» As with the Simplex method: First find a feasible solution basis
» lIteratively improve this solution with pivot operations until an o
optimal solution is found multipliers vi =10 ww=2 wv3=4 v =15 Supply
_ _ 10 2 20 11
The transportation algorithm: up =0 5 |10 15
1. Find a feasible solution 12 17 9 20
2. Find the entering variable: use simplex optimality condition Ur =5 5 5115 — 5 25
If optimality condition holds: stop. Else go to step 3 2= 2 12 16 i3
3. Find the leaving variable: use simplex feasibility condition t
Go to step 2 uz3 =3 10 10
Demand 5 15 15 15



Step 2: Finding an entering variable Update variable values

> A degenerate solution: basic variable xoo = 0
» Here: ¢jj = cjj — uj — v;

» Update also dual solution u; & v; such that ¢;; = 0 for basic
variables (631 =c31—u3—vi=0but¢ij1=c1—u1—v1=9> 0)

multipliers vy =10 v =2 v3 =4 vg =15 Supply
10 2 20 11 multipliers v =1 w =2 vz =4 va =15  Supply
=0 |5 10 [—4] |15 10 2 20 11
12 7 9 20 up =0 [9]]15 —4]| 15
u =5 —3]| 5 15 5 25 12 7 9 20
4 14 16 18 up =5 (6] o 15 10 25
u3 =3 | 9] 9] (9] | 10 10 4 14 16 18
Demand 5 15 15 15 =3 |5 9] [9]| 5 10
» Entering variable: x3; Demand 5 15 15 15

» Entering variable: x14

» Continue on the board ...

Step 3: Finding the leaving variable The assignment model

» One of the basic variables has to leave the basis
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> A special case of the transportation model
> Select the variable according the the simplex feasibility

condition (x;; > 0 for all i, )
> x31 =0 = ...

» Given n persons and n jobs

» Given further the cost cjj of assigning person i to job j
: ) '
A cycle in the graph: DRAW! » Binary variables xj; = 1 if person / does job j and x;; =0

otherwise
multipliers vi =10 v =2 vs =4 vi =15 Supply » Find the cheapest assignment of persons to jobs such that all
10 2 20 1 jobs are done
m=0 |50 10+0 —4|| 15
12 7 9 20 min 3. cixi
ij Xij
wm="5 -3]| 5-0 15 510 25 st UEJ- xj = 1 Vi
4 14 16 18 Zixij - 1
=3 | +0 |-9 9] 9] | 10-0 10 xi > 0 Vi
Demand 5 15 15 15 b= ’

» The optimal solution is binary (due to the totally unimodular

> x;j > 0= © <5= Choose ® =5 constraint matrix)



An assignment example

3 children: John, Karen and Terri

v

v

3 tasks: mow, paint and wash.

Given further a “cost” (time, uncomfort,...) for each
combination of child/task

How should the parents distribute the tasks to minimize the

cost?
Mow Paint  Wash ‘
John | 15 10 9 |
Karen 9 15 10
Terri 10 12 8

Choose exactly one element in each row and one in each

column

What if there are more tasks than children or vice versa?



