MVE165/MMG630, Applied Optimization Lecture 6 Minimum cost flow models and algorithms

Ann-Brith Strömberg

2009-03-27

Transportation models: An example

- MG Auto has three plants, LA, Detroit, New Orleans, and two distribution centers, Denver and Miami
- ► Capacities of the plants: 1000, 1500, and 1200 cars
- ▶ Demands at distributions centers: 2300 and 1400 cars
- Transportation cost per car between plants and centers:

	Denver	Miami
LA	\$80	\$215
Detroit	\$100	\$108
New Orleans	\$102	\$ 68

► Find the cheapest shipping schedule to satisfy the demand

Linear programming formulation of MG Auto

Variables: x_{ij} = number of cars sent from plant i to distribution center j

 $\min z = 80x_{11} + 215x_{12} + 100x_{21} + 108x_{22} + 102x_{31} + 68x_{32}$

s.t.
$$x_{11}$$
 $+x_{12}$ $= 1000$ (LA)
 x_{21} $+x_{22}$ $= 1500$ (Detr)
 x_{31} $+x_{32}$ $= 1200$ (NO)
 x_{11} $+x_{21}$ $+x_{31}$ $= 2300$ (Den)
 x_{12} $+x_{22}$ $+x_{32}$ $= 1400$ (Mi)
 x_{11} , x_{12} , x_{21} , x_{22} , x_{31} , $x_{32} \ge 0$

Definition of the transportation model

- ▶ m sources and n destinations ⇔ nodes
- $ightharpoonup a_i = amount of supply at source (node) i$
- $lackbox{b}_j = \text{amount of demand at destination (node) } j$
- ▶ **Arc** (i,j) \Leftrightarrow connection from source i to destination j
- $ightharpoonup c_{ij} = \text{cost per unit of flow on arc } (i,j)$
- ▶ **Variables:** $x_{ij} = \text{amount of goods shipped on arc } (i, j)$
- ▶ **Objective:** find $x_{ij} \ge 0$ such that the total cost is minimized while satisfying all supply and demand restrictions

Linear programming transportation model

$$\min z := \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$
 s.t.
$$\sum_{j=1}^n x_{ij} \leq a_i, \quad i=1,\ldots,m \quad \text{(supply)}$$

$$\sum_{i=1}^m x_{ij} \geq b_j, \quad j=1,\ldots,n \quad \text{(demand)}$$

$$x_{ij} \geq 0, \quad i=1,\ldots,m, \quad j=1,\ldots,n$$

- Feasible solutions exist *if and only if* $\sum_i a_i \geq \sum_j b_j$
- ► The constraint matrix has special properties (totally unimodular) ⇒ integer solutions in extreme points of the feasible polyhedron
- ► This property holds for all problems that can be formulated as linear flows in networks

Further details of the transportation model

- ➤ The transportation model is a **special case** of linear programming.
- Representation in a transportation tableau:

	Dei	nver	Mi	ami	Supply
LA		\$80		\$215	
	<i>x</i> ₁₁		<i>x</i> ₁₂		1000
Detroit		\$100		\$108	
	<i>x</i> ₂₁		x ₂₂		1500
New Orleans		\$102		\$68	
	<i>x</i> ₃₁		<i>x</i> ₃₂		1200
Demand	2300		1400		<u>-</u>

Optimal solution of the MG Auto model

	Der	nver	Mi	ami	Supply
LA		\$80		\$215	
	1000		0		1000
Detroit		\$100		\$108	
	1300		200		1500
New Orleans		\$102		\$68	
	0		1200		1200
Demand	2300		1400		•

- ▶ Solution method: A special version of the simplex method:
- ⇒ Equality constraints are required

Further details of the transportation model

 \triangleright What if total amount of demand \neq total amount of supply? $(\sum_i a_i > \sum_j b_j \text{ (feasible) or } \sum_i a_i < \sum_j b_j \text{ (infeasible)})$

$$\min z := \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{m} x_{ij} \leq a_{i}, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} x_{ij} \geq b_{j}, \quad j = 1, ..., n$$

$$x_{ij} \geq 0, \quad i = 1, ..., m, j = 1, ..., n$$

- \Rightarrow **Balance** the model by dummy source (m+1) or destination (n + 1)
 - ▶ Suppose $\sum_i a_i > \sum_i b_i \Rightarrow \text{Let } b_{n+1} := \sum_{i=1}^m a_i \sum_{i=1}^n b_i$
- ⇒ **Balanced** transportation model—equality constraints

min
$$z:=\sum_{i=1}^m\sum_{j=1}^{n+1}c_{ij}x_{ij}$$

s.t.
$$\sum_{j=1}^mx_{ij}=a_i,\quad i=1,\ldots,m$$

$$\sum_{i=1}^mx_{ij}=b_j,\quad j=1,\ldots,n+1$$

$$x_{ij}\geq 0,\quad i=1,\ldots,m,j=1,\ldots,n+1$$

- ► Two paper mills: Holmsund and Tuna
- Three saw mills: Silje, Graninge and Lunden
- ► Two storage terminals: Norrstig and Mellansel

Facility	Supply (m ³)	Demand (m ³)
Silje	2400	
Graninge	1800	
Lunden	1400	
Holmsund		3500
Tuna		2100

► Transportation opportunities:

From	То	Price/m ³	Capacity (m ³)
Silje	Norrstig	20	900
Silje	Mellansel	26	1000
Silje	Holmsund	45	1100
Graninge	Norrstig	8	700
Graninge	Mellansel	14	900
Graninge	Holmsund	37	600
Graninge	Tuna	22	600
Lunden	Mellansel	32	600
Lunden	Tuna	23	1000
Norrstig	Holmsund	11	1800
Norrstig	Mellansel	9	1800
Mellansel	Norrstig	9	1800
Mellansel	Tuna	9	1800

- ► Objective: Minimize transportation costs
- Satisfy demand
- Do not exceed the supply
- Do not exceed the transportation capacities
- An optimal solution


```
min z :=
              20x_{SN} + 26x_{SM} + 45x_{SH} + 8x_{GN} + 14x_{GM}
              +37x_{GH} + 22x_{GT} + 32x_{IM} + 23x_{IT} + 11x_{NH}
              +9x_{NM} + 9x_{MN} + 9x_{MT}
                                                                     -2400
                                                                               (Silje)
subject to
                                    -x_{SN}-x_{SM}-x_{SH}
                                                                     -1800
                            -x_{GN} - x_{GM} - x_{GH} - x_{GT}
                                                                               (Graninge)
                                                                     -1400
                                                                               (Lunden)
                                                                               (Norrstig)
                      x_{SN} + x_{GN} + x_{MN} - x_{NM} - x_{NH}
              x_{SM} + x_{IM} + x_{GM} + x_{NM} - x_{MN} - x_{MT}
                                                                               (Mellansel)
                                                                       3500
                                                                               (Holmsund)
                                       x_{SH} + x_{GH} + x_{NH}
                                       x_{GT} + x_{IT} + x_{MT}
                                                              II VIVIVIVIVIVIVIVIVIVIVIV
                                                                      2100
                                                                               (Tuna)
                                                                       900
                                                 1000
                                                                      1100
                                                                      700
                                                                      900
                                                                      600
                                                                      600
                                                                      600
                                                                       1000
                                                                      1800
                                                                      1800
                                                                       1800
                                                                       1800
```

▶ The columns \mathbf{A}_j of the equality constraint matrix $(\mathbf{A}\mathbf{x} = \mathbf{b})$ have one 1-element, one -1-element; the remaining elements are 0

The transportation problem: primal and dual problems

[Primal]

$$\begin{array}{lll} \min z := & \displaystyle \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \\ \text{subject to} & \displaystyle \sum_{j=1}^n x_{ij} = a_i, \quad i=1,\ldots,m \\ & \displaystyle \sum_{i=1}^m x_{ij} = b_j, \quad j=1,\ldots,n \\ & \displaystyle x_{ij} \geq 0, \quad i=1,\ldots,m, j=1,\ldots,n \end{array}$$

[Dual]

$$\max w := \sum_{i=1}^m a_i u_i + \sum_{j=1}^n b_j v_j$$
 subject to
$$u_i + v_j \leq c_{ij}, \quad i = 1, \dots, m, j = 1, \dots, n$$

The Simplex algorithm for transportation problems (generalized for general minimum cost flows in Ch. 10.7)

- ▶ The algorithm follows the steps of the Simplex method
- Transportation tableau instead of simplex tableau
- The special structure allows for simpler operations
- ► As with the Simplex method: First find a feasible solution
- Iteratively improve this solution with pivot operations until an optimal solution is found

The transportation algorithm:

- 1. Find a feasible solution
- 2. Find the *entering variable*: use simplex *optimality condition* If optimality condition holds: stop. Else go to step 3
- 3. Find the *leaving variable*: use *simplex feasibility condition* Go to step 2

Step 1: Finding a feasible solution

The Northwest-corner method

								Supply
	10		2		20		11	
5	\rightarrow	10						15
	12	+	7		9		20	
		5	\rightarrow	15	\rightarrow	5		25
	4		14		16	\downarrow	18	
						10		10
5		15		15		15		•

Cost for this solution:

Demand

$$10 \cdot 5 + 2 \cdot 10 + 7 \cdot 5 + 9 \cdot 15 + 20 \cdot 5 + 18 \cdot 10 = 520$$

- ▶ The nonzero variables are basic variables
- A basis for a network flow problem forms a tree in the corresponding graph
- DRAW THIS GRAPH!

Step 2: Finding an entering variable

- ▶ Reduced cost computations: $\overline{\mathbf{c}}$ (Recall, lecture 3: $\overline{c}_j = c_j \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_j$)
- ▶ Here: $\overline{c}_{ij} = c_{ij} u_i v_j$
- ▶ Basic variables: $\overline{c}_{ij} = 0 \Rightarrow \text{values for } u_i \text{ and } v_j$
- Non-basic variables: $\overline{c}_{ij} < 0 \Rightarrow x_{ij}$ candidate for entering the basis

multipliers	<i>v</i> ₁ =	= 10	<i>v</i> ₂ =	= 2	<i>V</i> 3 =	= 4	<i>v</i> ₄ =	= 15	Supply
		10		2		20		11	
$u_1 = 0$	5	\rightarrow	10						15
		12	\rightarrow	7		9		20	
$u_2 = 5$			5	\rightarrow	15	\rightarrow	5		25
		4		14		16	+	18	
$u_3 = 3$							10		10
Demand	5		15		15		15		•

Step 2: Finding an entering variable

• Here: $\overline{c}_{ij} = c_{ij} - u_i - v_j$

multipliers	v_1	= 10	<i>v</i> ₂ :	= 2	<i>V</i> 3	= 4	<i>v</i> ₄ =	= 15	Supply
		10		2		20		11	
$u_1 = 0$	5		10			16		_4	15
		12		7		9		20	
$u_2 = 5$		-3	5		15		5		25
		4		14		16		18	
$u_3 = 3$		-9		9		9	10		10
Demand	5		15	•	15	•	15		

► Entering variable: x₃₁

Step 3: Finding the leaving variable

- One of the basic variables has to leave the basis
- Select the variable according the the simplex feasibility condition $(x_{ij} \ge 0 \text{ for all } i, j)$
- $\triangleright x_{31} := \Theta \Rightarrow \dots$

A cycle in the graph: DRAW!

multipliers	$v_1 =$	= 10	$v_2 =$	2	<i>V</i> 3	= 4	$v_4 =$	15	Supply
		10		2		20		11	
$u_1 = 0$	5 –⊖		10 +⊖			16		-4	15
		12		7		9		20	
$u_2 = 5$		-3	5–⊝		15		5 +⊝		25
		4		14		16		18	
$u_3 = 3$	$+\Theta$	-9		9		9	10–⊝		10
Demand	5		15		15		15		

►
$$x_{ij} \ge 0 \Rightarrow \Theta \le 5 \Rightarrow \text{Choose } \Theta = 5$$

Update variable values

- ▶ A degenerate solution: basic variable $x_{22} = 0$
- ▶ Update also dual solution u_i & v_j such that $\overline{c}_{ij} = 0$ for basic variables $(\overline{c}_{31} = c_{31} u_3 v_1 = 0 \text{ but } \overline{c}_{11} = c_{11} u_1 v_1 = 9 > 0)$

multipliers	v_1	= 1	<i>v</i> ₂ :	= 2	<i>V</i> 3	= 4	<i>v</i> ₄ =	= 15	Supply
		10		2		20		11	
$u_1 = 0$		9	15			16		-4	15
		12		7		9		20	
$u_2 = 5$		6	0		15		10		25
		4		14		16		18	
$u_3 = 3$ Demand	5			9		9	5		10
Demand	5		15		15		15		

- ▶ Entering variable: x_{14}
- Continue on the board ...

The assignment model

- A special case of the transportation model
- Given n persons and n jobs
- ▶ Given further the cost c_{ij} of assigning person i to job j
- ▶ Binary variables $x_{ij} = 1$ if person i does job j and $x_{ij} = 0$ otherwise
- Find the cheapest assignment of persons to jobs such that all jobs are done

min
$$\sum_{ij} c_{ij} x_{ij}$$

s.t. $\sum_{j} x_{ij} = 1 \quad \forall i$
 $\sum_{i} x_{ij} = 1 \quad \forall j$
 $x_{ii} \geq 0 \quad \forall i, j$

► The optimal solution is binary (due to the totally unimodular constraint matrix)

An assignment example

- 3 children: John, Karen and Terri
- ▶ 3 tasks: mow, paint and wash.
- ► Given further a "cost" (time, uncomfort,...) for each combination of child/task
- ▶ How should the parents distribute the tasks to minimize the cost?

	Mow	Paint	Wash
John	15	10	9
Karen	9	15	10
Terri	10	12	8

- ► Choose exactly one element in each row and one in each column
- What if there are more tasks than children or vice versa?

