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Modelling with integer variables

» Variables

» Linear programming (LP) uses continuous variables: x; > 0

» Integer linear programming (ILP) use also integer, binary, and
discrete variables

» If both continuous and integer variables are used in a program,
it is called a mixed integer (linear) program (MILP)

» Constraints

» In an ILP (or MILP) it is possible to model linear constraints,
but also logical relations as, e.g. if—then and either—or

» This is done by introducing additional binary variables and
additional constraints
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Mixed integer modelling—fixed charges

» Send a truck = Start—up cost f > 0
» Load bread loafs = cost p > 0 per loaf

» x = # bread loafs to transport from bakery to store

c(x)
f <%
® M X
» Cost function ¢(x) = { 3’—|—px ii gzg <M

» The function ¢ : Ry — R, is nonlinear and discontinuos
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Integer linear programming modelling—fixed charges

» Let y = # trucks to send (here y equals 0 or 1)
» Replace c(x) by fy + px

» Constraints: 0 < x < My and y € {0,1}

I min fy + px |
s.t. x—My < 0
» New model: i/( g 0
! y € {0,1} |
» y=0 = x=0 = fy+px=0
»y=1 = x<M = fy+px=1Ff+px
» x>0 = y=1 = fy+px=1Ff+px
» x=0 #A y=0 But: Minimization will push y to zero!
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Discrete alternatives

x?2
» Suppose:
either x; +2xo <4 or bx; +3xp <10,
and x1, x> > 0 must hold
» Not a convex set x1
» Let M > 1 and define y € {0,1}
X1+ 2x0 ~-My < 4 ]
= New constraint set: o +3e —M(1-y) < 10
y € {0,1}
L X1, X2 > 0 |

] 0 = xx+2x <4 must hold
yY=311 = bx; +3x <10 must hold
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Exercises: Homework & friday

1. Suppose that you are interested in choosing from a set of
investments {1,...,7} using 0 — 1 variables. Model the
following constraints.

1.1 You cannot invest in all of them

1.2 You must choose at least one of them

1.3 Investment 1 cannot be chosen if investment 3 is chosen

1.4 Investment 4 can be chosen only if investment 2 is also chosen
1.5 You must choose either both investment 1 and 5 or neither

1.6 You must choose either at least one of the investments 1, 2
and 3 or at least two investments from 2, 4, 5 and 6

2. Formulate the following as mixed integer progams

2.1 u=min{xy, x2}, assuming that 0 < x; < C for j = 1,2
22 v=|x1 — x| with0 < x; < C forj=1,2
2.3 The set X \ {x*} where X = {x € Z"|Ax < b} and x* € X
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Linear programming: A small example

maximize x + 2y (0)
subjectto x 4+ y < 10 (1)
—x + 3y < 9 (2)
X < 7 (3)
x,y =2 0 (45)
X

» Optimal solution: (x*,y*) = (5%,43)

» Optimal objective value: 14%
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Integer linear programming: A small example

maximize x + 2y (0)
subjectto x 4+ y < 10 (1)
—x 4+ 3y < 9 (2)
X < 7 (3)
x,y > 0 (4,5)
X,y integer
X

» What if the variables are forced to be integral?

» Optimal solution: (x*, y*) = (6,4)

» Optimal objective value: 14 < 14%

» The optimal value decreases (possibly constant) when the
variables are restricted to have integral values
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ILP: Solution by the branch—and—bound algorithm

(e.g., Cplex, XpressMP, or GLPK)

» Relax integrality requirements =
linear, continuous problem = (X,y) = (53,432),z = 142

» Search tree: branch over
fractional variable values

y < f\ integer
N A

integer not feasible

- / ' (x,y) = (6,4),z = 14
e ; o~ o o ; 5 ’ -

(x,y) = (5,4),z = 13
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The knapsack problem—budget constraints

» Select an optimal collection of objects or investments or
projects ...

» ¢; = benefit of choosing object j, j=1,...,n
» Limits on the budget

» aj = cost of object j, j=1,...,n
» b = total budget

1, if object j is chosen,

. =1,...
0, otherwise. J -

» Variables: x; = {

n

> Objective function: |{max ) ;_,

CjXj

> Budget constraint: [ 7 ; ajx; < b

» Binary variables: | x; € {0,1}, j=1,...,n

Lecture 7 Applied Optimization



Computational complexity

» A small knapsack instance

z{ = max 213x3 +1928x0 + 11111x3 + 2345x4 + 9123 x5
subject to  12223x1+12224x,+36674x3+61119x4 +85569xs <
Xly..., X5 2>

» Optimal solution x* = (0,1,2444,0,0), zf = 27 157 212
» Cplex finds this solution in 0.015 seconds

89 643 482
0, integer

» The equality version

Z> = max 213x;3 +1928x0 + 11111x3 + 2345x4 + 9123 x5

subject to 12223x; +12224x,+36674x3 +61119x4 +85569xs = 89 643 482
X1,...,xs > 0,integer

» Optimal solution x* = (7334,0,0,0,0), z5 =1 562 142

» Cplex computations interrupted after 1700 sec. (= 3 hour)

» No integer solution found
Best upper bound found: 25 821 000

>
» 55 863 802 branch—and—bound nodes visited
» Only one feasible solution exists!
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Computational complexity

» Mathematical insight yields successful algorithms

» Example: Assignment problem: Assign n persons to n jobs.
» # feasible solutions: n! = Combinatorial explosion

» An algorithm 3 that solves this problem in time O(n*) o« n*

» Binary knapsack: O(2")

» Complete enumeration of all solutions is not efficient
n 2 5 8 10 100 1000

n! 2 | 120 | 40000 | 3600000 | 9.3-10%°7 | 4.0-10%°°f

on 4 | 32 | 256 1024 1.3-10%0 | 1.1.1030

n® 16 | 625 | 4100 | 10000 | 100000000 | 1.0-10%°
(nlogn | 0.6 | 3.5 | 7.2 10 200 3000)

» (Continuous knapsack (sorting of ;—j) O(nlog n))
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The set covering problem

» A number (n) of items and a cost for each item
» A number (m) of subsets of the n items

» Find a selection of the items such that each subset contains at
least one selected item and such that the total cost for the
selected 1tems Is minimized

» Mathematical formulation:
T

min C X
subjectto Ax > 1
X binary
ccR"and 1=(1,...,1)F € R™ are constant vectors

A € R™*" is a matrix with entries a;; € {0,1}
x € R is the vector of variables

v v v v

Related models: set partitioning (Ax = 1), set packing
(Ax < 1)
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Example: Installing security telephones

» The road administration wants to install emergency telephones
such that each street has access to at least one phone

» It is logical to place the phones at street crossings

» Each crossing has an installation cost: ¢ = (2,2,3,4,3,2,2,1)

» Find the cheapest selection of crossings to provide all streets
with phones

| ) ;
Street A Street B
jan)
= 15}
8 8
5 &
N
O <
o 8 0, @ Street G @
= )
n
~ =
& )
Street J Street K
(o) O, :

» Define variables and constraints



Installing security telephones: Mathematical model

» Binary variables for each crossing: x; = 1 if a phone is
installed at j, x; = 0 otherwise.

» For each street, introduce a constraint saying that a phone
should be placed at—at least—one of its crossings:

A:x1+x>1, B:xo+x3>1, | o 3
C:xi+x>1, D:xo+4+ x> 1,
E:xo+x4>1, F:xa+x7>1,
Gixa+xs2>1, Hixs+x2>1, @ﬁ i O
I: x5 +xg > 1, J: x +x7 > 1, ’ g ) _
K:i x7+x3 > 1

» Objective function:
min 2x13 + 2xo + 3x3 + 4xa4 + 3x5 + 2x6 + 2x7 + X3

» An optimal solution: x» = x5 = xg = x3 = 1,
x1 = x3 = x4 = xg = 0. Objective value: 9.

Lecture 7 Applied Optimization



More modelling examples

» Given three telephone companies A, B and, C which charge a
fixed start-up price of 16, 25 and, 18, respectively

» For each minute of call-time A, B, and, C charge 0.25, 0.21
and, 0.22

» We want to phone 200 minutes. Which company should we
choose?

» x; = number of minutes called by i € {A, B, C}

» Binary variables y; = 1 if x; > 0, y; = 0 otherwise (pay
start-up price only if calls are made with company /)

» Mathematical model

min 0.25x7 + 0.21x, +0.22x3 4+ 16y; + 25y> + 18y3
subject to x1+x0+x3 = 200

0<x, < 200y;, 1=1,2,3

yi € {0,1}, i=1,2,3
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More modelling examples (2)

» We wish to process three jobs on one machine

» Each job j has a processing time p;, a due date d;, and a
penalty cost ¢; if the due date i1s missed

» How should the jobs be scheduled to minimize the total
penalty cost?

Processing Due date Late penalty

Job time (days)  (days) $/day
1 b 25 19
2 20 22 12
3 15 35 34
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The linear assignment model

Assign each task to one resource, and each resource to one task

» Linear cost c;; for assigning task /1 to resource J,
i,j€{1l,...,n}

. 1. if task 7 i1s assigned to resource |
» Variables: x;; = { ’ & J

0, otherwise

min E E Cij Xij

subject to ZXU = 1, i=1,...,n

o
-
AV
R
<
|
—
S
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The linear assignment model

» Choose one element from each row and each column

C11 C12 C13 Clin
C21 |C22 €23 Con
C31 €32 C33 . G3n
Cn1Cn2 Cn3 Cnn

» This integer linear model has integral extreme points, since it
can be formulated as a network flow problem

» Therefore, it can be efficiently solved using specialized
(network) linear programming techniques

» Even more efficient special purpose
(primal—dual—graph-based) algorithms exist
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The travelling salesperson problem (TSP)

» Given n cities and connections between all cities (distances on
each connection)

» Find shortest tour that passes through all the cities

» A problem that is very easy to describe and understand but
very difficult to solve (combinatorial explosion)
» d different versions of TSP: Euclidean, metric, symmetric, ...
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An ILP formulation of the TSP problem

» Let the distance from city / to city y be dj;
» Introduce binary variables x;; for each connection

» Let V ={1,...,n} denote the set of nodes (cities)
min > > dijxj,
i€V jev
s.t. Z Xjj = 1, ieV, (1)
jEV
Z Xij = 1, JE€ V, (2)
iev
oox; > 1, YucVv:2<|UIL|V]-2, (3)
iel,jev\Uu
Xj binary i,jeV

» Cf. the assignment problem
» Enter and leave each city exactly once < (1) and (2) | DRAW!
» Constraints (3): subtour elimination DRrRAW!
» Alternative formulation of (3): DRAW!

Y iney Xii < U — 1,

Lecture 7
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VU C V:2< U < V| =2
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Solution methods for the TSP Problem

» Branch—&-bound

» Cutting plane algorithms

» Heuristics

» Nearest neighbor algorithm

» Lin-Kernighan's heuristic (2-opt, 3-opt, etc.)

» Christofides’ heuristic (spanning tree + “some” arcs ...)
>

» Common difficulty for all solution methods for the TSP:
Combinatorial explosion: # possible tours = n!

= Very many subtour elimination constraints
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The development of TSP solution

» Optimal solutions to TSP’s of different sizes found

oo n=
1954 49 2447 s
1962 33

1977 120

1987 532

1987 666

1987 2392

1994 7397

1998 13509

2001 15112 T
2004 24978 “ﬁ'ﬂ“f“:
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The worlds largest TSP solved so far ...

» A TSP of 24 978 cities, towns, and villages in Sweden
» Optimal tour: = 72 500 km (855597 TSP LIB units)

» The tour of length 855 597 was found in March 2003
(Lin-Kernighan’s TSP heuristic)

» It was proven in May 2004 that no shorter tour exists

» The final stages that improved the lower bound from 855 595
up to 855 597 required =~ 8 years of computation time
(running in parallel on a network of Linux workstations)

“Without knowledge of the 855 597 tour we would not have
made the decision to carry out this final computation”

» www.tsp.gatech.edu
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Facility location—a mixed integer linear model

» Choose a number of facilities (storage, depot) to serve a
number of customers

» m potential facilities, capacity k;, i1 =1,..., m

» n customers, demand d;, y =1,...,n

» Fixed cost f; > 0 of opening facility /

» Cost ¢ > 0 for transporting one unit from facility / to

customer J

> x;; = flow from i to j, yi = { 1 if facility 7 i1s opened

0 otherwise

min 27;1 ZF:]_ C::I'Xij + Z?;]_ f;.yl
n

s.t. Zj:l xjji < kiyi I=1,....,m
Srixi = d Jj=1,...,n

xj > 0 I=1,....m jy=1,....n
yi € {0,1} i=1,...,m
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