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Relaxations and feasible solutions

» Consider a maximization integer linear program (ILP):

[ILP] z* = max ¢'x
subjectto Ax < b
x > 0 and integer

» The feasible set X = {x € Z] | Ax < b}
» How prove that a solution x* € X is optimal?

» We cannot use strong duality/complementarity as for linear
programming (where X is convex (polyhedral))!

» Bounds on the optimal value

» Optimistic estimate z > z* from a relaxation of ILP
» Pessimistic estimate z < z* from a feasible solution to ILP

» Goal: Find tight bounds for z*: z — z < e and € > 0 “small”
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Optimistic estimates of z* from relaxations

» Either: Enlarge the set X by removing constraints

» Or: Replace ¢''x by an overestimating function f, i.e., such
that f(x) > cTx for all x € X

» Or: Do both
= solve a relaxation of (ILP)

» Example (enlarge X):
X ={x>0]|Ax <b, x integer } and
XM ={x>0]Ax < b}

= ZLP = max CTX

XEXLP

» It holds that z'Y > z* since X C X™P
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Relaxation principles that yield more tractable problems

» Linear programming relaxation
Remove integrality requirements (enlarge X)

» Combinatorial relaxation
E.g. remove subcycle constraints from asymmetric TSP =
min-cost assignment (enlarge X)

» Lagrangean relaxation
Move “complicating” constraints to the objective function,
with penalties for infeasible solutions; then find “optimal”
penalties (enlarge X and find f(x) > c¢Tx)
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Tight bounds

» Suppose that x € X is a feasible solution to ILP
(max-problem) and that X solves a relaxation of ILP

» Then
z:=c'x<zZ <c'x=:z
is an optimistic estimate of z*

z
> z is a pessimistic estimate of z*

» If z — z < ¢ then the value of the solution candidate x is at
most € from the optimal value z*

» Efficient solution methods for ILP combine relaxation and
heuristic methods to get tight bounds (small ¢ > 0)
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Good and ideal formulations

Ideal since all extreme
points are integral

Linear program has
integer extreme points
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Cutting plane algorithms (iterativley tighter relaxations)

» Solve the linear programming (continuous) relaxation

» If the solution is integer, then an optimal solution is found

» Otherwise, find a cut, i.e. a linear constraint that cuts off the
fractional solution, but none of the integer solutions

» The cut should also pass through at least one integer point
(= faster convergence)

» Add cuts to the current linear program and resolve until an
integer solution is found

» Remark: An inequality in higher dimensions defines a
hyper-plane; therefore the name cutting plane

Lecture 8 Applied Optimization



Cutting planes: A very small example

» Consider the following ILP:

max{x; + x2 : 2x1 + 4x2 < 7,x1,x2 > 0 and integer}

» ILP solution: z =3, x = (3,0)
» LP solution (continuous relaxation): z = 3.5, x = (3.5, 0)

» Generate a simple cut:
“Divide the constraint” by 2: -
xX1+2x <35=x1+2x <3

» Adding this cut to the
continuous relaxation yields
the optimal ILP solution
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Cutting planes: An example using valid inequalities (V1)

» Consider the ILP

max 7x; + 10x,
subject to  —x; + 3x
7x1 + x2

X1, X2

» LP optimum: z = 66.5, x = (4.5, 3.5)
» ILP optimum: z =58, x = (4, 3)

» Generate a VI by “adding”
the two constraints (1) and (2):

6x1 +4x <41 = 3x1 +2x < 20

= x = (4.36,3.45)

> Generate a VI by “7-(1)+(2)":

22 <=T7=>x, < 3

<
<
>

6 (1)
35 (2)
0, integer

= x = (4.57,3)
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Cutting plane algorithms

» Problem: It may be necessary to generate MANY cuts

» General methods: E.g., Chvatal-Gomory cuts (combine
constraints, make beneficial roundings of LHS and RHS)

» Pure cutting plane algorithms are usually less efficient than
branch—&-bound

» In commercial solvers (e.g. CPLEX), cuts are used to help
(presolve) the branch—-&-bound algorithm

> If the problem has a specific structure, as e.g. TSP and set
covering, problem specific classes of cuts are used
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Lagrangian relaxation (yields optimistic estimates)

» Consider a maximization integer linear program (ILP):

[ILP] z* = max ¢lx
subjectto Ax < b (1)
Dx < d (2)
x > 0 and integer

» Assume that the constraints (1) are complicating (subtour
eliminating constraints for TSP, e.g.)

» Define the set X = {x € Z] |Dx < d}

» Remove the constraints (1) and add them—uwith penalty
parameters v—to the objective function

9(v) = max {c"x +vT(b— Ax)} (3)
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Weak duality of Lagrangian relaxations

Theorem: For any v > 0 it holds that g(v) > z*.

Proof: Let X be feasible in [ILP] = X € X and AX < b. It then
holds that

q(v) = ma)? {ch + vT(b - Ax)} > cTi-l—vT(b — Ax) > c'x.
Xe

Since an optimal solution x* to [ILP] is also feasible, it holds
that

q(v) > cTx* = z*. -
= q(v) is an upper bound on the optimal value z* for any v > 0
» The best upper bound is given by

gt _m.nq(v)_r‘gg{max{c x+vl(b— Ax)}}
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Tractable integer Lagrangian relaxations

» Special algorithms for minimizing the Lagrangian dual
function g exist

> g is always convex but typically nondifferentiable
» For each value of v chosen, a subproblem (3) must be solved
» For general ILP:s there is typically a non-zero duality gap:
q* > 7+
» The Lagrangian relaxation bound is never worse that the
linear programming relaxation bound, i.e. z'¥ > g* > z*

» If the set X has the integrality property (i.e., X™' possesses
integral extreme points) then zMF = g¢*
» Choose the constraints (Ax < b) to dualize such that the

relaxed problem (3) is computationally tractable but still does
not possess the integrality property
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Branch—&-Bound algorithms (B&B)

v

vV v v v

>
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ILP]  z*= max ¢'x, XcC2Zn
x€X

A general principle for finding optimal solutions to
optimization problems with integrality requirements

Can be adopted to different types of models
Can be combined with other (e.g. heuristic) algorithms
Also called implicit enumeration and tree search

Idea: Enumerate all feasible solutions by a successive
partitioning of X into a family of subsets

Enumeration organized in a tree using graph search; it is made
implicit by utilizing approximations of z* from relaxations of
[ILP] for cutting off branches of the tree

The worst case-complexity for B&B is exponential



Branch—&—bound: Main concepts

» Relaxation: a simplification of [ILP] in which some constraints
are removed

» Purpose: to get simple (polynomially solvable) (node)
subproblems, and optimistic approximations of z*.

» Branching strategy: rules for partitioning a subset of X

» Purpose: exclude the solution to a relaxation if it is not
feasible in [ILP]

> Tree search strategy: defines the order in which the nodes in
the B&B tree are created and searched

» Purpose: quickly find good feasible solutions; limit the size of
the tree

» Node cutting criteria: rules for deciding when a subset should
not be further partitioned

» Purpose: avoid searching parts of the tree that cannot contain
an optimal solution
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> Relaxations: remove integrality requirements,
remove/Lagrangean relax complicating (linear) constraints

» Branching: should correspond to a partitioning of the feasible
set

> Tree search: depth—first, bredth—first, best—first, ...

» Cut off a node if the corresponding node subproblem has

» no feasible solution, or

» an optimal solution that is feasible in [ILP], or

» an optimal objective value that is worse (lower) than that of
any known feasible solution
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B&B: An Example

Solve the following ILP example using the branch—&-bound
algorithm

max b5x; + 4x
st. x31+x<5
10x1 + 6x2 < 45

LP-optimum is z = 23.75, x; = 3.75 and x, = 1.25.
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Local search—generating feasible solutions (pessimistic

estimates of z*)

Consider a maximization problem:

max CTX

xeX
0. Initialization: Choose a feasible solution x°. Let t = 0.
1. Find all feasible points in a neighbourhood N(x¥) of xk

2. If €Tx < ¢Txk for all x € X N N(xk) = Stop, x¥ is a local
optimum

3. Choose x*1 € X N N(x¥) such that ¢Tx**1 > ¢Txk

4. Let k:=k+1 and go to step 1
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More about local search heuristics

» Starting feasible solution from constructive heuristic
» Definition of neighbourhood is model specific

» Finds a local optimal solution

» No guarantee to find global optimal solutions

» Extensions (e.g. tabu search): Temporarily allow worse
solutions to move away from a local optimum

» Larger neighbourhoods yield better local optima, but takes
more computational time
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