
Chalmers University of Technology MVE165
University of Gothenburg MMG630
Mathematical Sciences Applied Optimization
Optimization Exercise information
Ann-Brith Strömberg April 26, 2010

Exercise 2: Nonlinear programming and software

Introduction

The purpose of these computer exercises is to get more familiar with using
software for solving nonlinear programs. This will be helpful for the assign-
ments and hopefully also in your future career. You will use the software
Matlab Optimization Toolbox and clp.

Following the exercises, you will see the different solvers with their strengths
and drawbacks. Note that the algorithms you will evaluate are so called local
optimization algorithms. This means that they search for local optimal

solutions.

Examination

The exercise should be performed in groups of two or three students. The
examination is preferably oral and accomplished at the computer laboration
occasion on the 27:th of April at 16–18, or the 4:th, 6:th, or 11:th of May at
16–19. Students not present at this occasion must hand in a written report
(not later than the 12:th of May at 17.00).

Preparation

Read Chapters 9–12 the course book and the notes of Lectures 11–13.

1



Exercise 2.1 – Unconstrained optimization

In this exercise, you will use a Matlab GUI to solve three unconstrained
optimization problems. You can switch between the steepest descent method
and Newton’s method, implemented in three different versions; with a unit
step length, a line search (called modified), and the Levenberg–Marquardt
modification (adding a positive diagonal matrix to the Hessian matrix).

• Download the zip-file nlplab09.zip from the homepage and unzip it
in a suitable folder:

> unzip nlplab09.zip

Move to the directory NLPLAB09. Start matlab in that directory and
type ilpmeny in the Matlab command window to access the GUI.

Answer the questions below, and motivate your answers.

1. Study Function 1: f(x1, x2) := 2(x1 + 1)2 + 8(x2 + 3)2 + 5x1 + x2

(a) Solve the problem to minimize f over ℜ2 using the steepest de-
scent and Newton’s (unit step) methods. Start at the points
(10, 10)T and (−5,−5)T. Towards which point do the methods
converge? How many iterations are required?

(b) Is the point obtained an optimal point (globally or locally)? Why?

(c) Why does Newton’s method converge in one iteration?

2. Study Function 2: (Rosenbrock’s function)

f(x1, x2) := 100(x2 − x2

1)
2 + (1 − x1)

2

(a) Solve the problem to minimize f over ℜ2 using the steepest de-
scent and Newton’s (unit step, Levenberg–Marquardt, and mod-
ified) methods. Start at the point (−1.5,−1)T. Towards which
point do the methods converge? How many iterations are re-
quired for the different methods?

(b) (Where) Is Function 2 convex? Is the point obtained a global
minimum?

3. Study Function 9: f(x1, x2) := cos(x2
1
− 3x2) + sin(x2

1
+ x2

2
)

(a) Solve the problem to minimize f over ℜ2 using the steepest de-
scent and Newton’s (unit step, Levenberg–Marquardt, and mod-
ified) method. Start at the point (1.2, 0.5)T . Towards which
points do the methods converge? How many iterations are re-
quired for the different methods? Does something unexpected
happen? What is the explanation?

(b) Is Function 9 convex? Are the points obtained global minima?

2



Exercise 2.2 – Quadratic programming

A quadratic program (QP) has a quadratic objective function and linear
constraints. Consider the quadratic program

min f := 1

2
(x1 − 1)2 + 1

2
(x2 − 5)2

−2x1 + x2 ≤ 2

−x1 + x2 ≤ 3

x1 ≤ 3

x1, x2 ≥ 0

(1)

Solve (1) graphically

State the Karush–Kuhn–Tucker conditions for (1)

Is x∗ a Karush–Kuhn–Tucker point, i.e., does it satisfy the Karush–Kuhn–
Tucker conditions. Is x∗ an (global) optimal solution?

In the Matlab Optimization Toolbox, there is a routine called quadprog for
solving quadratic programs. It has an interface which is simpler than the
one for solving general constrained optimization problems. The reason is
that a QP can be written using matrices solely:

minimize 1

2
xTHx + xTd,

subject to Ax ≤ b,

Aeqx = beq,

xl ≤ x ≤ xu

(2)

Try help quadprog. The above problem is solved using

>> [x, fval] = quadprog(H, d, A, b, Aeq, beq, xl, xu);

As with linprog, you can set options for the solver using the structure
options. Try help optimoptions, and help optimset. quadprog uses
two methods for solving (2): a medium scale and a large scale method. The
medium scale method is a so called active set method. It works similar to the
simplex method: the simplex method moves between vertices of the poly-
hedron (extreme points) and the active-set method for quadratic programs
moves along the edges of the polyhedron. It is not restricted to extreme
points (and actually not even edges as it may happen that the optimum is
unconstrained).

3



If the constraints in the quadratic program consist of only lower and upper
bounds, or if it has only equality constraints, then quadprog uses the large
scale method. It is a trust region method based on the Newton method.
In each iteration, a linear system involving the Hessian is solved iteratively.
This method is much faster than the active set method.

Solve (1) using quadprog

Clp can also solve quadratic programs. It uses a barrier method (also called
interior-point method), which means that the inequality constraints are pe-
nalized using logarithmic functions and the iterates move in the interior of
the feasible domain (compared to the active-set method which moves along
the edges). Clp can solve quite large quadratic programs.

You will compare the performance of quadprog against clp on a few difficult
QP’s.

• Download qpset.zip from the homepage, and unzip it in a suitable
folder. It contains one mat-file for each problem, and each mat-file
contains matrices A, Aeq, H and vectors d, b, beq, xl and xu.

To use clp, type (in Matlab)

>> addpath /chalmers/sw/unsup/clp-1.6.0

The driver routine is called clp. Try help clp. The matrix Q is the Hessian
(denoted by H in (2)).

Compare the performance of the solvers on the QP test set

4



Exercise 2.3 – Nonlinear constrained optimization

In this exercise you will solve nonlinear constrained problems using the driver
routine fmincon from the Matlab Optimization Toolbox. The (two) prob-
lems you will solve are from a test set called Hock-Schittkowski. The set
was collected in 1980, and it contains about one hundred small nonlinear
problems. The first problem is defined as

minimize f(x) := (x1 − 2)2 + (x2 − 1)2,

subject to −x1 − x2 + 2 ≥ 0,

−x2

1 + x2 ≥ 0,

(HS22)

and the second problem is defined as

minimize f(x) := (x1 − x2)
2 + (x2 − x3)

3 + (x3 − x4)
4 + (x4 − x5)

4,

subject to x1 + x2

2 + x3

3 − 3 = 0,

x2 − x2

3 + x4 − 1 = 0,

x1x5 − 1 = 0.

(HS47)

Try help fmincon to see how to use the driver. It is recommended that you
create two function files for each problem; one function file for the objective
function and one for the constraints. For example, if you want to solve the
first problem: create objhs22.m for the objective function and conhs22.m

for the constraints. The header for the objective function should be

function f = objhs22(x)

and for the constraints

function [c, ceq] = conhs22(x)

In objhs22, the objective value is f. In conhs22, c is a vector with one
component for each inequality constraint (of the form ci(x) ≤ 0) and ceq
is a vector with one component for each equality constraint (of the form
ceqi(x) = 0). If you have linear constraints or simple bounds on the vari-
ables, you can either include them in the constraint function, or specify them
as you did with quadprog. The complete interface for fmincon is

>> [x,f] = fmincon(@objhs22,x0,A,b,Aeq,beq,xl,xu,@conhs22,options);

If you don’t supply any derivatives for the objective function and the con-
straints, fmincon will use finite-difference to numerically approximate the
derivatives. If you do have the gradient g of the objective function, change
objhs22 to

5



function [f, g] = objhs22(x)

define the gradient g in the file objhs22.m and change options using

>> options = optimset(’GradObj’, ’on’);

To utilize the Jacobian of the constraints, read the help for fmincon, change
conhs22 and the options analogously.

Solve (HS22) and (HS47) using fmincon

For (HS47), try different starting points, e.g. (1, 1, 1, 1, 1), (−1,−1,−1,−1,−1),
and (10, 10, 10, 10, 10).

Draw a graphical picture of (HS22)

Do you find global optimal solutions? Are the two problems equally diffi-
cult/easy to solve?

The driver fmincon is a Sequential Quadratic Programming (SQP) solver.
In each iteration a quadratic program is solved. SQP is very popular for
small- and medium-scale problems, since it requires few function evaluations
and is very robust.

6


