MVE165/MMG630, Applied Optimization Lecture 1 Introduction; course map; modelling optimization applications; linear, nonlinear, and integer programs; graphic solution; software solvers

Ann-Brith Strömberg

2010-03-16

Staff

Examiner/lecturer: Ann-Brith Strömberg (anstr@chalmers.se, room L2087)

Guest lecturers:

- Fredrik Hedenus (Energy and Environment),
- Michael Patriksson (Mathematical Sciences),
- Caroline Olsson (Radiation Physics, Clinical Sciences), and
- Elin Svensson (Energy and Environment)

Course homepage

http://www.math.chalmers.se/Math/Grundutb/CTH/mve165/0910/

- Contains details, information on assignments and exercises, deadlines, lecture notes, etc
- Will be updated with new information every week during the course

Contents

- Applications of optimization
- Mathematical modelling
- Solution techniques algorithms
- Software solvers

Organization

- Lectures mathematical optimization theory
- ▶ Exercises use solvers, oral examination (or report) of #2
- Guest lectures applications of optimization
- Assignments modelling, use solvers, written reports, opposition & oral presentations
- Assignment work should be done in groups of two persons

Main course book:

- English version: Optimization (2010)
- Swedish version: Optimeringslära (2008)

by J. Lundgren, M. Rönnqvist, and P. Värbrand. Studentlitteratur.

Exercises:

- English version: Optimization Exercises (2010)
- Swedish version: Optimeringslära Övningsbok (2008)

by M. Henningsson, J. Lundgren, M. Rönnqvist, and P. Värbrand. Studentlitteratur.

Cremona/Studentlitteratur/Adlibris/...

Hand-outs

- A correctly solved computer Exercise #2 (oral examination or written report)
- ▶ Written reports of three assignments (1, 2, and 3a or 3b)
- A written opposition to Assignment 2
- An oral presentation of Assignment 3a or 3b
- To be able to receive a grade higher than 3 or G, the written reports and opposition as well as the oral presentation must be of high quality. Students aiming at grade 4, 5, or VG must also pass an oral exam

Overview of the lectures

- Linear programming, modelling, theory, solution methods, sensitivity analysis
- Optimization models that can be described as flows in networks, solution methods
- Discrete optimization models and solution methods
- Non-linear programming models, with and without constraints, solution methods
- Multiple objective optimization
- Optimization under uncertainty
- Mixtures of the above

"Do something as good as possible"

Something: Which are the decision alternatives?

- **Possible:** What restrictions are there?
- Good: What is a relevant optimization criterion?

A manufacturing example: Produce tables and chairs from two types of blocks

A manufacturing example, continued

- A chair is assembled from one large and two small blocks
- A table is assembled from two blocks of each size
- Only 6 large and 8 small blocks are available
- A table is sold at a revenue of 1600:-
- A chair is sold at a revenue of 1000:-
- Assume that all items produced can be sold and determine an optimal production plan

A mathematical optimization model

Something: Which are the decision alternatives? \Rightarrow Variables

 x_1 = number of tables produced and sold x_2 = number of chairs produced and sold

Possible: What restrictions are there? \Rightarrow Constraints

$2x_1$	$+ x_2$	\leq 6	(6 large blocks)
$2x_1$	$+ 2x_2$	\leq 8	(8 small blocks)
	x_1, x_2	\geq 0	(physical restrictions)
	(x_1, x_2)	integral)	(physical restrictions)

Good: What is a relevant optimization criterion? \Rightarrow Objective function

maximize $z = 1600x_1 + 1000x_2$ (z = total revenue)

Solve the model using LEGO!

- Start at no production: x₁ = x₂ = 0 Use the "best marginal profit" to choose the item to produce
 - x₁ has the highest marginal profit (1600:-/table)
 ⇒ produce as many tables as possible
 - At $x_1 = 3$: no more large blocks left
- The marginal value of x₂ is now 200:- since taking apart one table (−1600:-) yields two chairs (+2000:-) ⇒ 400:-/2 chairs
 - Increase x_2 maximally \Rightarrow decrease x_1
 - At $x_1 = x_2 = 2$: no more small blocks
- ► The marginal value of x₁ is negative (to build one more table one has to take apart two chairs ⇒ -400:-) The marginal value of x₂ is -600:- (to build one more chair one table must be taken apart)
 - \implies Optimal solution: $x_1 = x_2 = 2$

Geometric solution of the model

Operations research-more than just mathematics

- **Feasible solution:** A solution that satisfies all constraints
- Optimal solution: A solution that is feasible AND whose objective function value is as good as that of every feasible solution
- Sensitivity analysis: How does the optimal solution depend on the input parameters?
- Tractability: Can the the model be solved in reasonable time?
- Validity: Does the conclusions drawn from the solution hold for the REAL problem
- Operations research: Always a tradeoff between validity of the model and its tractability to analyse

- Heuristic or approximate solution: A solution that is feasible, but not guaranteed to be optimal. Quality measures can be computed
- Deterministic optimization model: All parameter values are assumed to be known for sure
- Stochastic optimization model: Involves quantities known only by probability (optimization under uncertainty)
- Multiple objective optimization: Typically, NO feasible solution exists that is optimal for ALL objectives. Search for Pareto optimal solutions

Optimization modelling: A production-inventory example

- Commission: Deliver windows over a six-month period
- Demand during the respective months: 100, 250, 190, 140, 220 & 110 units
- Production cost per unit (window): 50€,45€, 55€, 48€, 52€ & 50€
- Store a manufactured window from one month to the next at 8€
- Requirement: Meet the demand and minimize the costs
- Find an optimal production schedule

- x_i = number of units produced in month $i = 1, \dots, 6$
- y_i = units left in the inventory at the end of month $i = 1, \ldots, 6$

► The "flow" of windows can be illustrated as:

Each month:

initial inventory + production - ending inventory = demand

Objective function: minimize the costs for production and storage

▶ Production cost (€): $50 x_1 + 45 x_2 + 55 x_3 + 48 x_4 + 52 x_5 + 50 x_6$

► Inventory cost (€):
8
$$(y_1 + y_2 + y_3 + y_4 + y_5 + y_6)$$

Objective:

minimize
$$50x_1 + 45x_2 + 55x_3 + 48x_4 + 52x_5 + 50x_6$$

+8($y_1 + y_2 + y_3 + y_4 + y_5 + y_6$)

A complete (general) optimization model

minimize $\sum_{i=1}^{6} c_i x_i + 8 \sum_{i=1}^{6} y_i,$ subject to $y_{i-1} + x_i - y_i = d_i, \quad i = 1, \dots, 6,$ $y_0 = 0,$ $x_i, y_i \ge 0, \quad i = 1, \dots, 6,$

The vector of demand:

$$d = (d_i)_{i=1}^6 = (100, 250, 190, 140, 220, 110)$$

The vector of production costs:

$$c = (c_i)_{i=1}^6 = (50, 45, 55, 48, 52, 50)$$

.

An optimal solution—optimal production schedule

Optimal production each month: $x = (x_i)_{i=1}^6 = (100, 440, 0, 140, 220, 110)$

Optimal inventory each month: $y = (y_i)_{i=0}^6 = (0, 0, 190, 0, 0, 0, 0)$

The minimal total cost is 49980€

 $\begin{array}{ll} \text{minimize or maximize} & f(x_1, \dots, x_n) \\ \text{subject to} & g_i(x_1, \dots, x_n) & \left\{ \begin{array}{c} \leq \\ = \\ \geq \end{array} \right\} & b_i, \quad i = 1, \dots, m \end{array} \right]$

- x_1, \ldots, x_n are the decision variables
- f and g_1, \ldots, g_m are given functions of the decision variables
- b_1, \ldots, b_m are specified constant parameters
- The functions can be nonlinear, e.g. quadratic, exponential, logarithmic, non-analytic, ...
- ▶ In general, linear forms are more tractable than non-linear

Linear programming models

- The production inventory model is a linear program (LP), i.e., all relations are described by linear forms
- A general linear program:

A general mass , $\begin{bmatrix} \min \text{ or max } c_1 x_1 + \ldots + c_n x_n \\ \text{subject to } a_{i1} x_1 + \ldots + a_{in} x_n \quad \left\{ \begin{array}{c} \leq \\ \geq \end{array} \right\} \quad b_i, \quad i = 1, \ldots, m \\ \\ x_j \quad \geq \quad 0, \quad j = 1, \ldots, n \end{bmatrix}$

• The non-negativity constraints on x_i , j = 1, ..., n are not necessary, but usually assumed (reformulation always possible)

Discrete/integer/binary modelling

- A variable is called *discrete* if it can take only a countable set of values, e.g.,
 - Continuous variable: $x \in [0, 8]$ or $0 \le x \le 8$
 - Discrete variable: $x \in \{0, 4.4, 5.2, 8.0\}$
 - Integer variable: $x \in \{0, 1, 4, 5, 8\}$
- A binary variable can only take the values 0 or 1, i.e., all or nothing

E.g., a wind-mill can produce electricity only if it is built

- Let y = 1 if the mill is built, otherwise y = 0
- Capacity of a mill: C
- Production $x \leq Cy$ (also limited by wind force etc.)
- In general, models with only continuous variables are more tractable than models with integrality/discrete requirements on the variables, but exceptions exist!

Convex sets

A set S is convex if, for any elements $\mathbf{x}, \mathbf{y} \in S$ it holds that

 $lpha \mathbf{x} + (1 - lpha) \mathbf{y} \in S$ for all $0 \le lpha \le 1$

 \Rightarrow Intersections of linear (in)equalities \Rightarrow convex sets

Convex and concave functions

► A function f is convex on the set S if, for any elements x, y ∈ S it holds that

 $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$ for all $0 \le \alpha \le 1$

▶ A function f is concave on the set S if, for any elements $\mathbf{x}, \mathbf{y} \in S$ it holds that

 $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$ for all $0 \le \alpha \le 1$

 \Rightarrow Linear functions are convex (and concave)

Global solutions of convex and linear programs

- Let x* be a local minimizer of a convex function over a convex set. Then x* is also a global minimizer.
- \Rightarrow Every local optimum of a linear program is a global optimum
 - If a linear program has any optimal solutions, at least one optimal solution is at an extreme point of the feasible set
- \Rightarrow Search for optimal extreme point(s)
 - Next lecture: Linear programs and the simplex method