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Staff and homepage

Staff

» Examiner/lecturer: Ann-Brith Strémberg
(anstr@chalmers.se, room L2087)
» Guest lecturers:

Fredrik Hedenus (Energy and Environment),

Michael Patriksson (Mathematical Sciences),

Caroline Olsson (Radiation Physics, Clinical Sciences), and
Elin Svensson (Energy and Environment)

v

vV vy

Course homepage
http://wuw.math.chalmers.se/Math/Grundutb/CTH/mve165/0910/

» Contains details, information on assignmnents and exercises,
deadlines, lecture notes, etc

» Will be updated with new information every week during the
course
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Course contents and organization

Contents
» Applications of optimization
» Mathematical modelling
» Solution techniques — algorithms

» Software solvers

Organization

» Lectures — mathematical optimization theory

» Exercises — use solvers, oral examination (or report) of #2
» Guest lectures — applications of optimization
>

Assignments — modelling, use solvers, written reports,
opposition & oral presentations

v

Assignment work should be done in groups of two persons
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» Main course book:
» English version: Optimization (2010)
» Swedish version: Optimeringslara (2008)

by J. Lundgren, M. Ronnqvist, and P. Varbrand.
Studentlitteratur.

» Exercises:

» English version: Optimization Exercises (2010)
» Swedish version: Optimeringsldra Ovningsbok (2008)

by M. Henningsson, J. Lundgren, M. Roénnqvist, and
P. Varbrand. Studentlitteratur.

» Cremona/Studentlitteratur/Adlibris/...

» Hand-outs
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Examination

» A correctly solved computer Exercise #2 (oral examination or
written report)

» Written reports of three assignments (1, 2, and 3a or 3b)

» A written opposition to Assignment 2

» An oral presentation of Assignment 3a or 3b

» To be able to receive a grade higher than 3 or G, the written
reports and opposition as well as the oral presentation must

be of high quality. Students aiming at grade 4, 5, or VG must
also pass an oral exam
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Overview of the lectures

» Linear programming, modelling, theory, solution methods,
sensitivity analysis

» Optimization models that can be described as flows in
networks, solution methods

» Discrete optimization models and solution methods

» Non-linear programming models, with and without
constraints, solution methods

» Multiple objective optimization
» Optimization under uncertainty

» Mixtures of the above
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Optimization

“Do something as good as possib/e”'

» Something: Which are the decision alternatives?

» Possible: What restrictions are there?

» Good: What is a relevant optimization criterion?
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A manufacturing example:

Produce tables and chairs from two types of blocks

Small block Large block
x 8 %6
Chair Table

=
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A manufacturing example, continued

A chair is assembled from one large and two small blocks

v

A table is assembled from two blocks of each size

v

v

Only 6 large and 8 small blocks are avaliable

v

A table is sold at a revenue of 1600:-

A chair is sold at a revenue of 1000:-

v

v

Assume that all items produced can be sold and determine an
optimal production plan
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A mathematical optimization model
Something: Which are the decision alternatives? = Variables'

x1 = number of tables produced and sold
xp = number of chairs produced and sold
Possible: What restrictions are there? = Constraints'
21 + x < 6 (6 large blocks)
2x1 + 2x2 < 8 (8 small blocks)
x1, X2 > 0 (physical restrictions)

(x1, x2 integral)  (physical restrictions)

Good: What is a relevant optimization criterion? = Objective function'

maximize z = 1600x; + 1000xy (z = total revenue)
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Solve the model using LEGO!

» Start at no production: x; = x» =0
Use the “best marginal profit” to choose the item to produce

» x; has the highest marginal profit (1600:-/table)
= produce as many tables as possible
» At x; = 3: no more large blocks left

» The marginal value of x» is now 200:- since taking apart one
table (—1600:-) yields two chairs (+2000:-) = 400:-/2 chairs

» Increase x, maximally = decrease x;
» At x; = x» = 2: no more small blocks

» The marginal value of x; is negative (to build one more table
one has to take apart two chairs = —400:-)
The marginal value of x» is —600:- (to build one more chair
one table must be taken apart)
= Optimal solution: x; = x» =2
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Geometric solution of the model

maximize z = 1600x; + 1000x; (0)
subject to 2x1 + x < 6 (1)
2x1  + 2% < 8 (2)

X0 x1, 2 > 0

X1

(1)\ \(2)
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Operations research—more than just mathematics

Real problem

Verification Identification
i dati Limitation
Validation Simplification

—=

Simplified problem

Evauation Quantification

Optimization model

. Algorithm
Modification Data
—1 Solution
Communicar[_ion Presentation
Interpretation
Results

Lecture 1 Applied Optimization



» Feasible solution: A solution that satisfies all constraints

» Optimal solution: A solution that is feasible AND whose
objective function value is as good as that of every feasible
solution

» Sensitivity analysis: How does the optimal solution depend
on the input parameters?

» Tractability: Can the the model be solved in reasonable time?

» Validity: Does the conclusions drawn from the solution hold
for the REAL problem

» Operations research: Always a tradeoff between validity of
the model and its tractability to analyse
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More concepts

» Heuristic or approximate solution: A solution that is
feasible, but not guaranteed to be optimal. Quality measures
can be computed

» Deterministic optimization model: All parameter values are
assumed to be known for sure

» Stochastic optimization model: Involves quantities known
only by probability (optimization under uncertainty)

» Multiple objective optimization: Typically, NO feasible
solution exists that is optimal for ALL objectives. Search for
Pareto optimal solutions
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Optimization modelling: A production—inventory example

» Commission: Deliver windows over a six-month period

» Demand during the respective months: 100, 250, 190, 140,
220 & 110 units

» Production cost per unit (window): 50€,45€, 55€, 48<€,
52€ & 50€

» Store a manufactured window from one month to the next at
8€

» Requirement: Meet the demand and minimize the costs

» Find an optimal production schedule
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Define the decision variables

Xx; = number of units produced in month i =1,...,6

y¥i = units left in the inventory at the end of month i =1,....6

» The “flow” of windows can be illustrated as:

. X X X X, X X
production (x;): L 2 3 0

inventory (y;): _OﬁldLlLl)’i»lﬂ»l—&»lL

demand: 100 250 190 140 220 110
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Define the limitations/constraints

» Each month:

initial inventory + production — ending inventory = demand

0 + x1 — y1 = 100

yi + x2 — y» = 250

2+ x3 — y3 = 190

y3 + x4 — ys = 140

ya + x5 — ys = 220

s + x — ye = 110
Xi 5 Yi > 0, iZl,...,6
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Objective function: minimize the costs for production and

storage

» Production cost (€):
50 x1 + 45 x» + 55 x3 + 48 x4 + 52 x5 + 50 x¢

» Inventory cost (€):
8(yi+y2+tys+yatys+ ye)

» Objective:

minimize 50x; + 45x, + 55x3 + 48x4 + 52x5 4+ 50xg
+8(y1 +y2 + y3 + ya+ y5 + o)
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A complete (general) optimization model

6 6
minimize E cixi + 8 E Vi,
i=1 i=1

subject to y,il + x;j — y,-i = d, i=1,...,6,
o = 0,
xi,yi > 0, i=1,...,6,

The vector of demand:
d= (d,-)f?:1 = (100, 250, 190, 140, 220, 110)

The vector of production costs:
c = ()%, = (50, 45,55,48,52,50)
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An optimal solution—optimal production schedule

Optimal production each month:
x = (x)%_; = (100,440, 0, 140,220, 110)

Optimal inventory each month:
Yy = (.yi)?zo = (07 0? 1907 0’ 07 0’ 0)

production (x;): 100 440 0 140 220 110

inventory (y;): _O_)% _Oﬁ%l%__%jd%_od%_oﬂ%_oﬁ

demand (d}): 100 250 190 140 220 110

The minimal total cost is 49980 €
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Mathematical optimization models

minimize or maximize f(xi,...,X,)
< .
subject to gi(x1,...,xn) { S } bi, i=1,....m
> Xi,...,Xn are the decision variables
» f and g1,...,8m are given functions of the decision variables
» bi,..., b, are specified constant parameters

» The functions can be nonlinear, e.g. quadratic, exponential,
logarithmic, non-analytic, ...

» In general, linear forms are more tractable than non-linear
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Linear programming models

» The production inventory model is a linear program (LP), i.e.,
all relations are described by linear forms

» A general linear program:

[ min or max ¢ixq+...+ chxp T
. <
subject to aj1x1 + ...+ ainxn { S } b;, i=1,...,m
! = 0, j=1...n |
» The non-negativity constraints on x;, j = 1,...,n are not

necessary, but usually assumed (reformulation always possible)
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Discrete/integer /binary modelling

» A variable is called discrete if it can take only a countable set
of values, e.g.,

» Continuous variable: x € [0,8] or 0 < x < 8
» Discrete variable: x € {0,4.4,5.2,8.0}
» Integer variable: x € {0,1,4,5,8}

» A binary variable can only take the values O or 1, i.e., all or
nothing

E.g., a wind-mill can produce electricity only if it is built
» Let y = 1 if the mill is built, otherwise y =0

» Capacity of a mill: C
» Production x < Cy (also limited by wind force etc.)

» In general, models with only continuous variables are more
tractable than models with integrality/discrete requirements
on the variables, but exceptions exist!
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Convex sets

> A set S is convex if, for any elements x,y € S it holds that

ax+(l—a)yeSforall0<a<1

» Examples:

Convex sets Non-convex sets

)
D

= Intersections of linear (in)equalities = convex sets
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Convex and concave functions

» A function f is convex on the set S if, for any elements
x,y € S it holds that

flax+ (1 —a)y) < af(x)+ (1 —a)f(y) forall 0 < a <1

» A function f is concave on the set S if, for any elements
x,y € S it holds that

flax+ (1 —a)y) > af(x) + (1 —a)f(y) forall 0 < a <1

= Linear functions are convex (and concave)

Convex function Non-convex function

flax+ (1 — a)y)

X ax+ (1 — a)y y X ax+ (1 — a)y y
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Global solutions of convex and linear programs

> Let x* be a local minimizer of a convex function over a
convex set. Then x* is also a global minimizer.

= Every local optimum of a linear program is a global optimum

» If a linear program has any optimal solutions, at least one
optimal solution is at an extreme point of the feasible set

= Search for optimal extreme point(s)

» Next lecture: Linear programs and the simplex method
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