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An overview of nonlinear optimization

General notation of nonlinear programs

minimize x∈ℜn f (x)

subject to gi (x) ≤ 0, i = 1, . . . ,m.

Some special cases

◮ Unconstrained problems (m = 0):
minimize f (x) subject to x ∈ ℜn

◮ Convex programming: f convex, gi convex, i = 1, . . . ,m

◮ Linear constraints: gi (x) = aT
i x − bi , i = 1, . . . ,m

◮ Quadratic programming: f (x) = cTx + 1
2x

TQx

◮ Linear programming: f (x) = cTx
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Areas of applications, examples (Ch. 9.1)

◮ Structural optimization
◮ Design of aircraft, ships, bridges, etc
◮ Decide on the material and the thickness of a mechanical

structure
◮ Minimize weight, maximize stiffness, constraints on

deformation at certain loads, strength, etc
◮ Analysis and design of traffic networks

◮ Estimate traffic flows and discharges
◮ Detect bottlenecks
◮ Analyze effects of traffic signals, tolls, etc

◮ Least squares—adaptation of data

◮ Engine development, design of antennas, ...

for each function evaluation a simulation may be needed
◮ Maximize the volume of a cylinder

while keeping the surface area constant
◮ Assessment of cutting patterns

◮ ...
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Properties of nonlinear programs

◮ The mathematical properties of nonlinear optimization
problems can be very different

◮ No algorithm exists that solves all nonlinear optimization
problems

◮ An optimal solution does not have to be located at an
extreme point

◮ Nonlinear programs can be unconstrained (what if a linear
program has no constraints?)

◮ In this course: We study models with f differentiable (which is
not always the case)

◮ For convex problems: Algorithms converge to an optimal
solution

◮ Nonlinear problems can have local optima that are not global
optima
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Possible extremal points for

minimize f (x) subject to x ∈ S

x

f (x)

1 2 3 4 5 6 7S

◮ boundary points of S

◮ stationary points, where f ′(x) = 0

◮ discontinuities in f or f ′ Draw!
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Boundary and stationary points (Ch. 10.0)

◮ x is a boundary point to the feasible set

S = {x ∈ ℜn | gi (x) ≤ 0, i = 1, . . . ,m}

if gi (x) ≤ 0, i = 1, . . . ,m, and gi (x) = 0 for at least one index i

◮ x is a stationary point to f if ∇f (x) = 0
(in one dimension: if f ′(x) = 0)
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Local and global minima (maxima) (Ch. 2.4)

minimize f (x) subject to x ∈ S

◮ x is a local minimum if x ∈ S and f (x) ≤ f (x) for all x ∈ S
sufficiently close to x

◮ In words: A solution is a local minimum if it is feasible and no
other feasible solution in a sufficiently small neighbourhood

has a lower objective value

◮ Formally: ∃ε > 0 such that f (x) ≤ f (x) for all
x ∈ S ∩ {x ∈ ℜn : ‖x − x‖ ≤ ε}

◮ Draw!!

◮ x is a global minimum if x ∈ S and f (x) ≤ f (x) for all x ∈ S

◮ In words: A solution is a global minimum if it is feasible and no
other feasible solution has a lower objective value
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Unconstrained optimization

minimize f (x) subject to x ∈ ℜn

◮ Assume that f : ℜn 7→ ℜ is continuously differentiable on ℜn

◮ Necessary conditions for a local optimum:

x is a local minimum/maximum for f ⇒ ∇f (x) = 0

◮ This is not sufficient, since ∇f (x̃) = 0 also when x̃ is a saddle
point, e.g.

◮ If f is twice continuously differentiable on ℜn then the
Hessian matrix exists: Hf (x) = ∇2f (x)

◮ Sufficient conditions for a local optimum:

∇f (x) = 0
Hf (x) pos/neg definite

}

⇒ x is a local min/max for f
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When is a local optimum also a global optimum?

(Ch. 9.3)

◮ The concept of convexity is essential

◮ Functions: convex (minimization), concave (maximization)

◮ Sets: convex (minimization and maximization)

◮ The minimization (maximization) of a convex (concave)
function over a convex set is referred to as a convex
optimization problem

◮ How conclude whether sets and functions are convex,
concave, or neither?
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Convex functions

◮ A function f is convex on S if, for any x, y ∈ S it holds that

f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y) for all 0 ≤ α ≤ 1

x xy yαx + (1 − α)y αx + (1 − α)y

f (x)
f (x)

f (y)

f (y)

αf (x) + (1 − α)f (y)

αf (x) + (1 − α)f (y)

f(αx + (1 − α)y)

f(αx + (1 − α)y)

A convex function A non-convex function

◮ f is strictly convex on S if, for any x, y ∈ S such that x 6= y it
holds that

f (αx + (1 − α)y) < αf (x) + (1 − α)f (y) for all 0 < α < 1
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Convex/concave functions

◮ f is (strictly) concave on S if −f is (strictly) convex on S

◮ f is convex ⇔ Hf is positive semi-definite

◮ Hf is positive definite ⇒ f is strictly convex

◮ Definition: The quadratic matrix H is positive definite
(semi-definite) if dTHd > 0 for all d 6= 0 (dTHd ≥ 0 ∀d)

◮ Example: Check convexity for f (x) = 2x2 − 2xy + y2 + 3x − y

◮ ∇f (x) =

(

4x − 2y + 3
−2x + 2y − 1

)

Hf (x) =

(

4 −2
−2 2

)

◮ Eigenvalues for Hf (x): det(Hf (x) − λI ) = 0 ⇔
∣

∣

∣

∣

4 − λ −2
−2 2 − λ

∣

∣

∣

∣

= (4 − λ)(2 − λ) − 4 = 0 ⇔

λ2 − 6λ + 4 = 0 ⇒ λ1 = 3 +
√

5 > 0, λ2 = 3 −
√

5 > 0 ⇒
Hf (x) is positive definite ⇒ f is strictly convex
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Convex functions – Examples

◮ Check (strict?) convexity of the function f (x , y) = x3 + y3 on
ℜ2 (on ℜ2

+)

◮ Check whether (where) the function f (x , y) = ln x − y2 + cxy

is convex, concave, or neither (assume that the constant
c > 0)
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Convex functions

◮ (Th. 9.4) A non-negative linear combination of convex
functions is convex:

fi convex, i = 1, . . . ,m
λi ≥ 0, i = 1, . . . ,m

}

⇒ f =

m
∑

i=1

λi fi is convex

◮ Draw!!

◮ The pointwise maximum of convex functions is convex:

fi(x), i = 1, . . . ,m, convex ⇒ f (x) = max
i=1,...,m

fi(x) convex

◮ Draw!!

Lecture 11 Applied Optimization



More about convex functions

◮ If g : ℜ 7→ ℜ is convex and non-decreasing and h : ℜn 7→ ℜ is
convex, then the composite function f = g(h) : ℜn 7→ ℜ is
convex

◮ Example: g(y) = y ln y , h(x) = x2
1 + x2

2

◮ g ′(y) = 1 + ln y > 0 for y > e (⇒ g nondecreasing),

◮ g ′′(y) = 1
y

> 0 for y > 0 (⇒ g convex)

◮ ∇h(x) = (2x1, 2x2)
T, Hh(x) = ∇2h(x) =

(

2 0
0 2

)

(⇒ h convex)

⇒ f (x) = g(h(x)) = (x2
1 + x2

2 ) ln(x2
1 + x2

2 ) is convex for x ∈ ℜ2

such that x2
1 + x2

2 > e
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Convex sets

◮ A set S is convex if, for any elements x, y ∈ S it holds that

αx + (1 − α)y ∈ S for all 0 ≤ α ≤ 1

◮ Examples:

x

x
y

y

Convex sets Non-convex sets
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Convex sets

◮ Consider a set S defined by the intersection of m inequalities:

S = { x ∈ ℜn | gi (x) ≤ 0, i = 1, . . . ,m }
where the functions gi : ℜn 7→ ℜ

◮ (Th. 9.2 & 9.3) If all the functions gi (x) i = 1, . . . ,m, are
convex on ℜn, then S is a convex set

◮ Example:
g1(x) = x2

1 + 3x2
2 − 1, g2(x) = x1 + x2, g3(x) = x2

1 − x2

S =
{

x ∈ ℜ2 | gi (x) ≤ 0, i = 1, 2, 3
}

⇒

Hg1(x) =

(

2 0
0 6

)

⇒ g1 strictly convex,

Hg2(x) =

(

0 0
0 0

)

⇒ g2 convex (& concave!),

Hg3(x) =

(

2 0
0 0

)

⇒ g3 convex

⇒ The set S is convex Draw!!
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Global optima of convex programs

◮ (Def. 9.5) If f and gi , i = 1, . . . ,m, are convex functions, then
minimize f (x) subject to gi (x) ≤ 0, i = 1, . . . ,m

is said to be a convex optimization problem

◮ (Th. 9.1) Let x∗ be a local optimum for a convex optimization
problem. Then x∗ is also a global optimum

◮ If f is strictly convex and gi , i = 1, . . . ,m, are convex, then
there exists at most one optimal solution (a unique global
optimum)

◮ (Th. 10.2) Necessary and sufficient condition for optimality in
unconstrained minimization (maximization):
Suppose that f : ℜn 7→ ℜ is convex (concave) and
continuously differentiable on ℜn. A point x∗ ∈ ℜn is a global
minimum for f if and only if ∇f (x∗) = 0
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Solution methods for unconstrained optimization

(Ch. 2.5.1)

◮ General iterative search method:

1. Choose a starting solution, x0 ∈ ℜn. Let k = 0

2. Determine a search direction dk

3. If a termination criterion is fulfilled ⇒ Stop!

4. Determine a step length, tk , by solving:

minimize t≥0ϕ(t) := f (xk + t · dk)

5. New iteration point, xk+1 = xk + tk · dk

6. Let k := k + 1 and return to step 2

◮ How choose search directions dk , step lengths tk , and
termination criteria?
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Improving search directions (Ch. 10)

◮ Goal: f (xk+1) < f (xk) (minimization)

◮ How does f change locally in a direction dk at xk?

◮ Taylor expansion (Ch. 9.2):
f (xk + tdk) = f (xk) + t∇f (xk)Tdk + O(t2)

◮ For sufficiently small t > 0:
f (xk + tdk) < f (xk) ⇒ ∇f (xk)Tdk < 0

⇒ Definition:
If ∇f (xk)Tdk < 0 then dk is a descent direction for f at xk

If ∇f (xk)Tdk > 0 then dk is an ascent direction for f at xk

◮ We wish to minimize (maximize) f over ℜn:

⇒ Choose dk as a descent (an ascent) direction from xk
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An improving step
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Figur: At xk , the descent direction dk is generated. A step tk is taken in
this direction, producing xk+1. At this point, a new descent direction
dk+1 is generated, and so on.
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Solution methods for unconstrained optimization

(Ch. 2.5.1)

◮ General iterative search method:

1. Choose a starting solution, x0 ∈ ℜn. Let k = 0

2. Determine a search direction dk

3. If a termination criterion is fulfilled ⇒ Stop!

4. Determine a step length, tk , by solving:

minimize t≥0ϕ(t) := f (xk + t · dk)

5. New iteration point, xk+1 = xk + tk · dk

6. Let k := k + 1 and return to step 2
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Step length—line search (minimization) (Ch. 10.4)

◮ Solve mint≥0 ϕ(t) := f (xk + t · dk) where dk is a descent
direction from xk

◮ A minimization problem in one variable ⇒ Solution tk

◮ Analytic solution: ϕ′(tk) = 0 (seldom possible to derive)

◮ Numerical solution methods:
◮ The golden section method (reduce the interval of uncertainty)
◮ The bi-section method (reduce the interval of uncertainty)
◮ Newton-Raphson’s method
◮ Armijo’s method

◮ In practice: Do not solve exactly, but to a sufficient
improvement of the function value:
f (xk + tkd

k) ≤ f (xk) − ε for some ε > 0
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Line search
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Figur: A line search in a descent direction.
tk solves mint≥0 ϕ(t) := f (xk + t · dk)
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Line search—the Armijo step length rule

tR(ǫ)

ϕ(0) + t · ϕ′(0) ϕ(0) + t · ǫ ϕ′(0)

ϕ(t)

Figur: The interval R(ǫ) accepted by the Armijo step length rule.
ǫ = the fraction of decrease required, 0 < ǫ < 1
R(ǫ) = { t ≥ 0 |ϕ(t) ≤ ϕ(0) + t · ǫ ϕ′(0) } Note that ϕ′(0) < 0
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Line search—the Golden section method

Based on decreasing an interval containing t∗ (the function may
contain no more than one local minimum in the interval
considered)

1. Let αk and βk be lower and upper bound on t∗: αk ≤ t∗ ≤ βk

2. Choose ℓk = βk − γ(βk − αk), uk = αk + γ(βk − αk)
where γ ≈ 0.618 (the (inverted) golden ratio)

3. Evaluate ϕ(ℓk), ϕ(uk) and replace αk or βk by ℓk or uk

4. Terminate or let k := k + 1 and return to 2.

t
ℓk

ℓk
uk

uk

αk

αk

βk

βk

ϕ(t)

k = 0

k = 1 ϕ(ℓk ) > ϕ(uk ) ⇒

⇒ whichever of [αk , uk ] or [ℓk , βk ] provides the next interval, its
size will be γ times the current size
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Solution methods for unconstrained optimization

◮ General iterative search method:

1. Choose a starting solution, x0 ∈ ℜn. Let k = 0

2. Determine a search direction dk

3. If a termination criterion is fulfilled ⇒ Stop!

4. Determine a step length, tk , by solving:

minimize t≥0ϕ(t) := f (xk + t · dk)

5. New iteration point, xk+1 = xk + tk · dk

6. Let k := k + 1 and return to step 2
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Termination criteria

◮ Needed since ∇f (xk) = 0 will never be fulfilled exactly

◮ Typical choices (εj > 0, j = 1, . . . , 4)

(a) ‖∇f (xk)‖ < ε1

(b) |f (xk+1) − f (xk)| < ε2

(c) ‖xk+1 − xk‖ < ε3

(d) tk < ε4

These are often combined

◮ The search method only guarantees a stationary solution,
whose properties are determined by the properties of f

(convexity, ...)
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