MVE165/MMG630, Applied Optimization Lecture 11 Unconstrained nonlinear programming

Ann-Brith Strömberg

2010-04-22

An overview of nonlinear optimization

General notation of nonlinear programs

$$\begin{array}{ll} \text{minimize }_{\mathbf{x}\in\Re^n} & f(\mathbf{x})\\ \text{subject to} & g_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,m. \end{array}$$

Some special cases

- ► Unconstrained problems (m = 0): minimize f(x) subject to x ∈ ℜⁿ
- Convex programming: f convex, g_i convex, $i = 1, \ldots, m$
- Linear constraints: $g_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} b_i, \quad i = 1, \dots, m$
 - Quadratic programming: $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}$
 - Linear programming: $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$

Areas of applications, examples (Ch. 9.1)

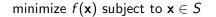
► STRUCTURAL OPTIMIZATION

- Design of aircraft, ships, bridges, etc
- Decide on the material and the thickness of a mechanical structure
- Minimize weight, maximize stiffness, constraints on deformation at certain loads, strength, etc
- ► ANALYSIS AND DESIGN OF TRAFFIC NETWORKS
 - Estimate traffic flows and discharges
 - Detect bottlenecks
 - Analyze effects of traffic signals, tolls, etc
- ► LEAST SQUARES—ADAPTATION OF DATA
- ► ENGINE DEVELOPMENT, DESIGN OF ANTENNAS, ... for each function evaluation a simulation may be needed
- MAXIMIZE THE VOLUME OF A CYLINDER while keeping the surface area constant
- ► Assessment of cutting patterns

Properties of nonlinear programs

- The mathematical properties of nonlinear optimization problems can be very different
- No algorithm exists that solves all nonlinear optimization problems
- An optimal solution does not have to be located at an extreme point
- Nonlinear programs can be unconstrained (what if a linear program has no constraints?)
- In this course: We study models with f differentiable (which is not always the case)
- For convex problems: Algorithms converge to an optimal solution
- Nonlinear problems can have local optima that are not global optima

Possible extremal points for



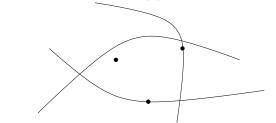
- boundary points of S
- stationary points, where $f'(\mathbf{x}) = 0$
- discontinuities in f or f' DRAW!

Boundary and stationary points (Ch. 10.0)

• $\overline{\mathbf{x}}$ is a *boundary* point to the feasible set

$$S = {\mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \le 0, i = 1, \dots, m}$$

if $g_i(\overline{\mathbf{x}}) \leq 0$, i = 1, ..., m, and $g_i(\overline{\mathbf{x}}) = 0$ for at least one index i



▶ $\overline{\mathbf{x}}$ is a *stationary* point to f if $\nabla f(\mathbf{x}) = \mathbf{0}$ (in one dimension: if $f'(x) = \mathbf{0}$)

Local and global minima (maxima) (Ch. 2.4)

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$

- ▶ $\overline{\mathbf{x}}$ is a local minimum if $\overline{\mathbf{x}} \in S$ and $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$ sufficiently close to $\overline{\mathbf{x}}$
 - In words: A solution is a *local* minimum if it is *feasible* and no other feasible solution in a sufficiently *small neighbourhood* has a lower objective value
 - ▶ Formally: $\exists \varepsilon > 0$ such that $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S \cap {\mathbf{x} \in \Re^n : ||\mathbf{x} \overline{\mathbf{x}}|| \leq \varepsilon}$
 - ► DRAW!!

▶ $\overline{\mathbf{x}}$ is a global minimum if $\overline{\mathbf{x}} \in S$ and $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$

In words: A solution is a *global* minimum if it is *feasible* and no other feasible solution has a lower objective value

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Re^n$

- Assume that $f : \Re^n \mapsto \Re$ is continuously differentiable on \Re^n
- **Necessary conditions** for a local optimum:

 $\overline{\mathbf{x}}$ is a local minimum/maximum for $f \Rightarrow \nabla f(\overline{\mathbf{x}}) = \mathbf{0}$

- ► This is not sufficient, since ∇f(x̃) = 0 also when x̃ is a saddle point, e.g.
- If f is twice continuously differentiable on ℜⁿ then the Hessian matrix exists: H_f(x) = ∇²f(x)
- Sufficient conditions for a local optimum:

$$abla f(\overline{\mathbf{x}}) = \mathbf{0}$$

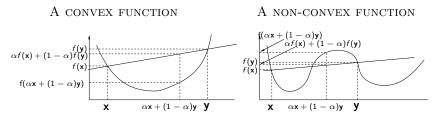
 $H_f(\overline{\mathbf{x}}) \text{ pos/neg definite }
ight\} \Rightarrow \overline{\mathbf{x}} \text{ is a local min/max for } f$

When is a local optimum also a global optimum? (Ch. 9.3)

- The concept of convexity is essential
- Functions: convex (minimization), concave (maximization)
- Sets: convex (minimization and maximization)
- The minimization (maximization) of a convex (concave) function over a convex set is referred to as a convex optimization problem
- How conclude whether sets and functions are convex, concave, or neither?

Convex functions

► A function f is convex on S if, for any $\mathbf{x}, \mathbf{y} \in S$ it holds that $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) \text{ for all } 0 \le \alpha \le 1$



F is strictly convex on S if, for any x, y ∈ S such that x ≠ y it holds that

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < lpha f(\mathbf{x}) + (1 - lpha)f(\mathbf{y})$$
 for all $0 < lpha < 1$

Convex/concave functions

- ▶ f is (strictly) concave on S if -f is (strictly) convex on S
- f is convex \Leftrightarrow H_f is positive semi-definite
- H_f is positive definite \Rightarrow f is strictly convex
- ▶ Definition: The quadratic matrix *H* is positive definite (semi-definite) if d^THd > 0 for all d ≠ 0 (d^THd ≥ 0 ∀d)
- Example: Check convexity for $f(\mathbf{x}) = 2x^2 2xy + y^2 + 3x y$

$$\blacktriangleright \nabla f(\mathbf{x}) = \begin{pmatrix} 4x - 2y + 3 \\ -2x + 2y - 1 \end{pmatrix} \quad H_f(\mathbf{x}) = \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix}$$

► Eigenvalues for $H_f(\mathbf{x})$: det $(H_f(\mathbf{x}) - \lambda I) = 0$ $\begin{vmatrix} 4 - \lambda & -2 \\ -2 & 2 - \lambda \end{vmatrix} = (4 - \lambda)(2 - \lambda) - 4 = 0$ $\lambda^2 - 6\lambda + 4 = 0 \Rightarrow \lambda_1 = 3 + \sqrt{5} > 0, \ \lambda_2 = 3 - \sqrt{5} > 0 \Rightarrow$ $H_f(\mathbf{x})$ is positive definite $\Rightarrow f$ is strictly convex ► Check (strict?) convexity of the function f(x, y) = x³ + y³ on ℜ² (on ℜ²₊)

► Check whether (where) the function f(x, y) = ln x - y² + cxy is convex, concave, or neither (assume that the constant c > 0)

Convex functions

 (Th. 9.4) A non-negative linear combination of convex functions is convex:

$$\begin{cases} f_i \text{ convex}, & i = 1, \dots, m \\ \lambda_i \ge 0, & i = 1, \dots, m \end{cases} \Rightarrow f = \sum_{i=1}^m \lambda_i f_i \text{ is convex} \end{cases}$$

► DRAW!!

The pointwise maximum of convex functions is convex:

$$f_i(\mathbf{x}), i = 1, \dots, m, \text{ convex} \quad \Rightarrow \quad f(\mathbf{x}) = \max_{i=1,\dots,m} f_i(\mathbf{x}) \text{ convex}$$

More about convex functions

If g : ℜ → ℜ is convex and non-decreasing and h : ℜⁿ → ℜ is convex, then the composite function f = g(h) : ℜⁿ → ℜ is convex

• Example:
$$g(y) = y \ln y$$
, $h(\mathbf{x}) = x_1^2 + x_2^2$

•
$$g'(y) = 1 + \ln y > 0$$
 for $y > e$ ($\Rightarrow g$ nondecreasing),

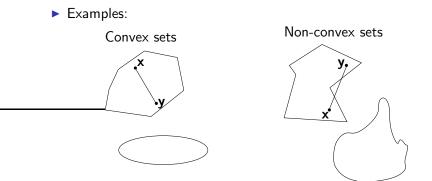
•
$$g''(y) = \frac{1}{y} > 0$$
 for $y > 0$ ($\Rightarrow g$ convex)

►
$$\nabla h(\mathbf{x}) = (2x_1, 2x_2)^{\mathrm{T}}, \ H_h(\mathbf{x}) = \nabla^2 h(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

(⇒ h convex)

 $\Rightarrow f(\mathbf{x}) = g(h(\mathbf{x})) = (x_1^2 + x_2^2) \ln(x_1^2 + x_2^2) \text{ is convex for } \mathbf{x} \in \Re^2$ such that $x_1^2 + x_2^2 > e$ ▶ A set S is convex if, for any elements $\mathbf{x}, \mathbf{y} \in S$ it holds that

$$lpha \mathbf{x} + (1 - lpha) \mathbf{y} \in S$$
 for all $0 \le lpha \le 1$



Convex sets

• Consider a set *S* defined by the intersection of *m* inequalities:

$$S = \{ \mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \}$$

where the functions $g_i: \Re^n \mapsto \Re$

► (Th. 9.2 & 9.3) If all the functions g_i(x) i = 1,..., m, are convex on ℜⁿ, then S is a convex set

Example:

$$g_{1}(\mathbf{x}) = x_{1}^{2} + 3x_{2}^{2} - 1, g_{2}(\mathbf{x}) = x_{1} + x_{2}, g_{3}(\mathbf{x}) = x_{1}^{2} - x_{2}$$

$$S = \left\{ \mathbf{x} \in \Re^{2} \mid g_{i}(\mathbf{x}) \leq 0, i = 1, 2, 3 \right\} \Rightarrow$$

$$H_{g_{1}}(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix} \Rightarrow g_{1} \text{ strictly convex},$$

$$H_{g_{2}}(\mathbf{x}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow g_{2} \text{ convex (\& concave!),}$$

$$H_{g_{3}}(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow g_{3} \text{ convex}$$

$$\Rightarrow \text{ The set } S \text{ is convex} \qquad \text{DRAW!!}$$

Global optima of convex programs

- ▶ (Def. 9.5) If f and g_i, i = 1,..., m, are convex functions, then minimize f(x) subject to g_i(x) ≤ 0, i = 1,..., m is said to be a *convex* optimization problem
- (Th. 9.1) Let x* be a *local* optimum for a convex optimization problem. Then x* is also a *global* optimum
- ► If f is strictly convex and g_i, i = 1,..., m, are convex, then there exists at most one optimal solution (a unique global optimum)
- (Th. 10.2) Necessary and sufficient condition for optimality in unconstrained minimization (maximization): Suppose that f : ℜⁿ → ℜ is convex (concave) and continuously differentiable on ℜⁿ. A point x^{*} ∈ ℜⁿ is a global minimum for f if and only if ∇f(x^{*}) = 0

Solution methods for unconstrained optimization (Ch. 2.5.1)

General iterative search method:

- 1. Choose a starting solution, $\mathbf{x}^0 \in \Re^n$. Let k = 0
- 2. Determine a search direction \mathbf{d}^k
- 3. If a termination criterion is fulfilled \Rightarrow Stop!
- 4. Determine a step length, t_k , by solving:

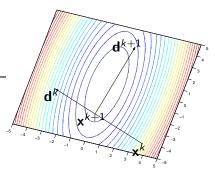
minimize $_{t\geq 0}\varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$

- 5. New iteration point, $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- 6. Let k := k + 1 and return to step 2
- How choose search directions d^k, step lengths t_k, and termination criteria?

Improving search directions (Ch. 10)

- Goal: $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$ (minimization)
- ▶ How does *f* change locally in a direction **d**^{*k*} at **x**^{*k*}?
- ► Taylor expansion (Ch. 9.2): $f(\mathbf{x}^k + t\mathbf{d}^k) = f(\mathbf{x}^k) + t\nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k + \mathcal{O}(t^2)$
- ► For sufficiently small t > 0: $f(\mathbf{x}^k + t\mathbf{d}^k) < f(\mathbf{x}^k) \Rightarrow \nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k < 0$
- We wish to minimize (maximize) f over \Re^n :
- \Rightarrow Choose \mathbf{d}^k as a descent (an ascent) direction from \mathbf{x}^k

An improving step



Figur: At \mathbf{x}^k , the descent direction \mathbf{d}^k is generated. A step t_k is taken in this direction, producing \mathbf{x}^{k+1} . At this point, a new descent direction \mathbf{d}^{k+1} is generated, and so on.

Solution methods for unconstrained optimization (Ch. 2.5.1)

General iterative search method:

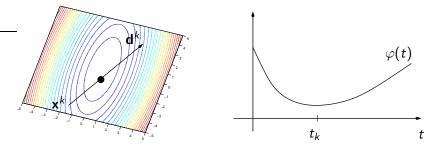
- 1. Choose a starting solution, $\mathbf{x}^0 \in \Re^n$. Let k = 0
- 2. Determine a search direction \mathbf{d}^k
- 3. If a termination criterion is fulfilled \Rightarrow Stop!
- 4. Determine a step length, t_k , by solving:

minimize
$$_{t\geq 0}\varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$$

- 5. New iteration point, $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- 6. Let k := k + 1 and return to step 2

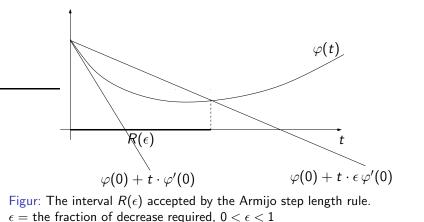
Step length—line search (minimization) (Ch. 10.4)

- Solve min_{t≥0} φ(t) := f(x^k + t ⋅ d^k) where d^k is a descent direction from x^k
- A minimization problem in one variable \Rightarrow Solution t_k
- Analytic solution: $\varphi'(t_k) = 0$ (seldom possible to derive)
- Numerical solution methods:
 - The golden section method (reduce the interval of uncertainty)
 - The bi-section method (reduce the interval of uncertainty)
 - Newton-Raphson's method
 - Armijo's method
- In practice: Do not solve exactly, but to a sufficient improvement of the function value: f(x^k + t_kd^k) ≤ f(x^k) − ε for some ε > 0



Figur: A line search in a descent direction. t_k solves $\min_{t\geq 0} \varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$

Line search—the Armijo step length rule



 $R(\epsilon) = \{ t \ge 0 \mid \varphi(t) \le \varphi(0) + t \cdot \epsilon \varphi'(0) \}$ Note that $\varphi'(0) < 0$

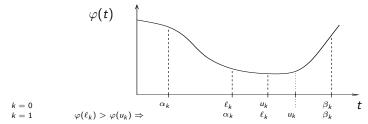
Line search—the Golden section method

Based on decreasing an interval containing t^* (the function may contain no more than one local minimum in the interval considered)

1. Let α_k and β_k be lower and upper bound on t^* : $\alpha_k \leq t^* \leq \beta_k$

2. Choose
$$\ell_k = \beta_k - \gamma(\beta_k - \alpha_k)$$
, $u_k = \alpha_k + \gamma(\beta_k - \alpha_k)$
where $\gamma \approx 0.618$ (the (inverted) golden ratio)

- 3. Evaluate $\varphi(\ell_k)$, $\varphi(u_k)$ and replace α_k or β_k by ℓ_k or u_k
- 4. Terminate or let k := k + 1 and return to 2.



⇒ whichever of $[\alpha_k, u_k]$ or $[\ell_k, \beta_k]$ provides the next interval, its size will be γ times the current size

Solution methods for unconstrained optimization

- General iterative search method:
 - 1. Choose a starting solution, $\mathbf{x}^0 \in \Re^n$. Let k = 0
 - 2. Determine a search direction \mathbf{d}^k
 - 3. If a termination criterion is fulfilled \Rightarrow Stop!
 - 4. Determine a step length, t_k , by solving:

minimize
$$_{t\geq 0}\varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$$

- 5. New iteration point, $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- 6. Let k := k + 1 and return to step 2

Termination criteria

▶ Needed since $\nabla f(\mathbf{x}^k) = \mathbf{0}$ will never be fulfilled exactly

These are often combined

The search method only guarantees a stationary solution, whose properties are determined by the properties of f (convexity, ...)