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An overview of nonlinear optimization

General notation of nonlinear programs
minimize yexn (%)
subject to  gi(x) <0, i=1,...,m.
Some special cases

» Unconstrained problems (m = 0):
minimize f(x) subject to x € R"

» Convex programming: f convex, g; convex,i =1,..., m
> Linear constraints: gj(x) =a/x—b;, i=1,...,m
> Quadratic programming: f(x) = ¢’ x + 2x7Qx

> Linear programming: f(x) = ¢”x
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of application

» STRUCTURAL OPTIMIZATION
» Design of aircraft, ships, bridges, etc
» Decide on the material and the thickness of a mechanical
structure
» Minimize weight, maximize stiffness, constraints on
deformation at certain loads, strength, etc
» ANALYSIS AND DESIGN OF TRAFFIC NETWORKS
» Estimate traffic flows and discharges
» Detect bottlenecks
» Analyze effects of traffic signals, tolls, etc
» LEAST SQUARES—ADAPTATION OF DATA
» ENGINE DEVELOPMENT, DESIGN OF ANTENNAS, ...
for each function evaluation a simulation may be needed
» MAXIMIZE THE VOLUME OF A CYLINDER
while keeping the surface area constant
» ASSESSMENT OF CUTTING PATTERNS
> ..
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Properties of nonlinear programs

» The mathematical properties of nonlinear optimization
problems can be very different

» No algorithm exists that solves all nonlinear optimization
problems

» An optimal solution does not have to be located at an
extreme point

» Nonlinear programs can be unconstrained (what if a linear
program has no constraints?)

» In this course: We study models with f differentiable (which is
not always the case)

» For convex problems: Algorithms converge to an optimal
solution

» Nonlinear problems can have local optima that are not global
optima
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Possible extremal points for

minimize f(x) subject to x € S

f(x)

:F
[
1

» boundary points of S

]
]
2 3 456 7°

» stationary points, where f'(x) = 0

» discontinuities in f or f’ Draw!
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Boundary and stationary points (Ch. 10.0)

» X is a boundary point to the feasible set
S={xeR"|g(x)<0,i=1,...,m}

if gi(X) <0,i=1,...,m, and g;(X) = O for at least one index i

> X is a stationary point to f if Vf(x) =0
(in one dimension: if f'(x) = 0)
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Local and global minima (maxima) (Ch. 2.4)

minimize f(x) subject tox € S

» X is a local minimum if X € S and f(X) < f(x) forall x € S
sufficiently close to X

» In words: A solution is a local minimum if it is feasible and no
other feasible solution in a sufficiently small neighbourhood
has a lower objective value

» Formally: 3¢ > 0 such that f(X) < f(x) for all
xeSN{xeR":|x—%| <e}

» DrAW!!
> X is a global minimum if X € S and f(X) < f(x) forallxe S

» In words: A solution is a global minimum if it is feasible and no
other feasible solution has a lower objective value
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Unconstrained optimization

minimize f(x) subject to x € R"

v

Assume that f : R" — R is continuously differentiable on k"

v

Necessary conditions for a local optimum:

X is a local minimum/maximum for f = Vf(x) =0

» This is not sufficient, since Vf(X) = 0 also when X is a saddle
point, e.g.
» If f is twice continuously differentiable on " then the

Hessian matrix exists: H¢(x) = V2f(x)

v

Sufficient conditions for a local optimum:
Vi(x)=0

H (%) pos/neg definite } = X is a local min/max for f
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When is a local optimum also a global optimum?

(Ch. 9.3)

» The concept of convexity is essential

» Functions: convex (minimization), concave (maximization)

» Sets: convex (minimization and maximization)

» The minimization (maximization) of a convex (concave)
function over a convex set is referred to as a convex

optimization problem

» How conclude whether sets and functions are convex,
concave, or neither?
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Convex functions

» A function f is convex on S if, for any x,y € S it holds that

flax+ (1 —a)y) <af(x)+ (1 —a)f(y) forall 0 <a <1

A CONVEX FUNCTION A NON-CONVEX FUNCTION

(ax + (1 — a)y)
af(x) + (1 — a)f(y)

af() + (1 — 0)F )
F(x) b=

flax + (1 — a)y)

X ax+ (1 — a)y y X  ax+(1—a)y y

» f is strictly convex on S if, for any x,y € S such that x # y it
holds that

flax+ (1 —a)y) < af(x) + (1 —a)f(y) forall 0 < a < 1

Lecture 11 Applied Optimization



Convex/concave functions

» f is (strictly) concave on S if —f is (strictly) convex on S
» f is convex < Hy is positive semi-definite
> Hy is positive definite = f is strictly convex

» Definition: The quadratic matrix H is positive definite
(semi-definite) if dTHd > 0 for all d # 0 (d " Hd > 0 Vd)

» Example: Check convexity for f(x) = 2x% —2xy + y?> +3x — y
_ 4x —2y +3 B 4 -2

> V) = < —ox+2y—1 > Hr(x) = < 2 2 >

» Eigenvalues for He(x): det(Hr(x) — Al) =0 <

4-\ -2
‘ 5 2_)\‘_(4—)\)(2—)\)—4—0@

M—B6A+4=0=>X1=3+v5>01=3-v5>0=
Hg(x) is positive definite = f is strictly convex

Lecture 11 Applied Optimization



Convex functions — Examples

» Check (strict?) convexity of the function f(x,y) = x>+ y3 on
R2 (on R2)

» Check whether (where) the function f(x,y) = Inx — y? + cxy
is convex, concave, or neither (assume that the constant
c>0)
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Convex functions

» (Th. 9.4) A non-negative linear combination of convex
functions is convex:

= f = Z)\,-f,- is convex

i=1

fi convex, i=1,...,m
Ai >0, i=1,...,m

» Draw!!

» The pointwise maximum of convex functions is convex:

fi(x), i=1,...,m, convex = f(x)= _max fi(x) convex

Ii b 9
» Draw!!
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More about convex functions

» If g: R — R is convex and non-decreasing and h: R" — R is
convex, then the composite function f = g(h) : " — R is
convex

» Example: g(y) = yIny, h(x) = x? + x3

» g'(y)=1+Iny >0 for y > e (= g nondecreasing),

» g'(y) = % > 0 for y > 0 (= g convex)

> Vh(x) = (2x1,2x2)", Hp(x) = V2h(x) = ( g (2) )

(= h convex)

= f(x) = g(h(x)) = (x* + x3) In(xZ + x3) is convex for x € R?
such that x? +x3 > e
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Convex sets

> A set S is convex if, for any elements x,y € S it holds that
ax+(l—a)yeSforall0<a<1

» Examples:

Convex sets Non-convex sets

-
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Convex sets

» Consider a set S defined by the intersection of m inequalities:
S={xeR"|gi(x) <0, i=1,....,m}

where the functions g; : R" — R

» (Th. 9.2 & 9.3) If all the functions gj(x) i =1,..., m, are
convex on R, then S is a convex set

» Example:
gi(x) =x2+3x3 — 1, @(x) = x1 + x2, g3(x) = x% — x2
Sz{xE?Rz | gi(x) <0, i:1,2,3}:>
Hg, (x) = < g g ) = gy strictly convex,

Hg, (x) = ( 8 8 ) = g» convex (& concave!),
Hg, (x) = ( g 8 ) = g3 convex
= The set S is convex Draw!!



Global optima of convex programs

> (Def. 9.5) If f and gj, i = 1,..., m, are convex functions, then
minimize f(x) subject to gi(x) <0, i=1,...,m
is said to be a convex optimization problem

» (Th. 9.1) Let x* be a local optimum for a convex optimization
problem. Then x* is also a global optimum

» If f is strictly convex and g;, i = 1,..., m, are convex, then
there exists at most one optimal solution (a unique global
optimum)

» (Th. 10.2) Necessary and sufficient condition for optimality in
unconstrained minimization (maximization):
Suppose that f : R" — R is convex (concave) and
continuously differentiable on ”. A point x* € R" is a global
minimum for f if and only if Vf(x*) =0
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Solution methods for unconstrained optimization

(Ch. 2.5.1)

» General iterative search method:
1. Choose a starting solution, X’ € R". Let k =0
Determine a search direction d*

If a termination criterion is fulfilled = Stop!

N

Determine a step length, tx, by solving:

minimize ¢>o¢(t) := f(x* + t - d¥)

5. New iteration point, x**1 = x¥ + ¢, - d¥

6. Let k:= k+ 1 and return to step 2

» How choose search directions d, step lengths t, and
termination criteria?
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Improving search directions (Ch. 10)

> Goal: f(xk*1) < f(x¥) (minimization)
» How does f change locally in a direction d* at xk?

» Taylor expansion (Ch. 9.2):
f(xk + td*¥) = £(x¥) + tVF(x*)Td* + O(?)

» For sufficiently small t > O:
f(xk + td¥) < f(xk) = VF(x)Tdk <0

= Definition:
If VF(x¥)Td* < 0 then d* is a descent direction for f at x*
If V£(x¥)Td* > 0 then d* is an ascent direction for f at x*

» We wish to minimize (maximize) f over R

= Choose d as a descent (an ascent) direction from x*
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An improving step

Figur: At x¥, the descent direction d* is generated. A step t is taken in
this direction, producing x*1. At this point, a new descent direction
d**1 is generated, and so on.
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Solution methods for unconstrained optimization

(Ch. 2.5.1)

» General iterative search method:
1. Choose a starting solution, x® € R". Let k =0
2. Determine a search direction d*
3. If a termination criterion is fulfilled = Stop!
4. Determine a step length, tx, by solving:

minimize ¢>o¢(t) := f(x* + t - d¥)

5. New iteration point, x**1 = x¥ + t, - d¥

6. Let k:= k+ 1 and return to step 2
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Step length—Iline search (minimization) (Ch. 10.4)

>

Solve miny>q ¢(t) := f(x* + t - d*) where d* is a descent
direction from xk

» A minimization problem in one variable = Solution tj
» Analytic solution: ¢/(tx) =0 (seldom possible to derive)
» Numerical solution methods:

The golden section method (reduce the interval of uncertainty)
The bi-section method (reduce the interval of uncertainty)
Newton-Raphson's method

Armijo's method

vV vy VvYyy

v

In practice: Do not solve exactly, but to a sufficient
improvement of the function value:
f(xK + txd¥) < f(x¥) — ¢ for some ¢ > 0
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Line search

ti t

Figur: A line search in a descent direction.
tx solves ming>q ¢(t) := f(xK + t - d¥)
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Line search—the Armijo step length rule

© | ;

©(0) 4 t - (0) ©(0) + t - e¢'(0)
Figur: The interval R(e) accepted by the Armijo step length rule.
€ = the fraction of decrease required, 0 < e < 1
R(e)={t>0]p(t) <ep(0)+t-e¢'(0)} Note that ¢/(0) < 0

Lecture 11 Applied Optimization



Line search—the Golden section method

Based on decreasing an interval containing t* (the function may
contain no more than one local minimum in the interval
considered)

1. Let ay and Bk be lower and upper bound on t*: ay < t* < (i

2. Choose £\ = Bk — Y(Bk — k), uk = ax +Y(Bk — k)

where 7 =~ 0.618 (the (inverted) golden ratio)
3. Evaluate ¢(¢x), ¢(uk) and replace a or [k by £k or uy
4. Terminate or let k := k + 1 and return to 2.

o(t)

k=0 o Ly uy B t
k=1 P(l) > e(u) = g Ly U Br

= whichever of [, uk] or [¢k, Bk] provides the next interval, its
size will be v times the current size
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Solution methods for unconstrained optimization

» General iterative search method:
1. Choose a starting solution, x° € R". Let k =0
2. Determine a search direction d*
3. If a termination criterion is fulfilled = Stop!
4. Determine a step length, ty, by solving:

minimize ¢>o¢(t) := f(x* + t - d¥)

5. New iteration point, x**1 = x* + t, - d¥

6. Let k:= k+ 1 and return to step 2
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Termination criteria

> Needed since V£(x¥) = 0 will never be fulfilled exactly

» Typical choices (¢; >0, j=1,...,4)
(a) [IVF(x¥)|| < &1
(b) [FO<HY) — F(x)| < &2
(c) IIx**t —xK|| < e3
(d) te < €4
These are often combined

» The search method only guarantees a stationary solution,

whose properties are determined by the properties of f
(convexity, ...)
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