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Direction finding methods: Steepest descent

(Ch. 10.1)

◮ Let the search direction be minus the gradient (minimization):

dk = −∇f (xk)

Pros:

◮ Requires only gradient information

◮ Not so computationally demanding per iteration

Cons:

◮ (Very) Slow convergence towards a stationary point

◮ Each direction dk is perpendicular to the previous one dk−1

(if the line search (i.e., the steplength optimization problem) is
solved exactly)—the iterate sequence is “zig-zagging”
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Direction finding methods: Newton’s method

(Ch. 10.2)

◮ Make use of second derivative information (curvature).

◮ Requires f to be twice continuously differentiable.

◮ Taylor expansion of f around x:
ϕx(d) := f (x) + ∇f (x)Td + 1

2
dT∇2f (x)d (≈ f (x + d))

◮ We wish to find a direction d ∈ ℜn such that
∇dϕx(d) = ∇f (x) + ∇2f (x)d = ∇f (x) + Hf (x)d = 0n

(a stationary point for ϕx) ⇒ dk = −Hf (x
k)−1∇f (xk)

◮ Observe that line search not needed, t = 1 (unit step)

◮ Only look for stationary points for ϕx ⇒ same dk for
min/max problems

◮ If f is quadratic (i.e., f (x) = a + cTx + 1

2
xTQx), then

Newtons method finds a stationary point for f in one
iteration. Verify this!
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Direction finding methods: Newton’s method

Pros:

◮ Fast convergence

Cons:

◮ Convergens towards a stationary point only guaranteed if
starting “sufficiently close” to one

◮ If f is convex around the starting point x (i.e., Hf (x) positive
definite), then Newton’s method converges towards a local
minimum

◮ Newton does not distinguish between different types of
stationary points

◮ Requires more computations per iteration (matrix inversions)

◮ Does not always work (if det(Hf (x
k)) = 0)
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Practical modifications of Newton’s method

(minimization) (Ch. 10.3)

◮ Start using Steepest descent, then change to Newton’s
method

◮ Use dk = −M(xk)∇f (xk), where M(xk) ≈ Hf (x
k)−1 and

M(xk) is positive definite (Quasi-Newton)

◮ Efficient updates of the inverse should be used

◮ Let M(xk) =
(

Hf (x
k) + Ek

)

−1
such that M(xk) becomes

positive definite, e.g., Ek = γk I (which shifts all the
eigenvalues by +γk)

◮ This is called the Levenberg-Marquardt modification

◮ Note: for large values of γk , this makes dk resemble the
steepest descent direction
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Optimization over convex sets

Up to now, we have looked at unconstrained optimization. Now:
minimize f (x) subject to x ∈ S

where S = { x ∈ ℜn | gi (x) ≤ 0, i = 1, . . . ,m } is a convex set

◮ Definition Feasible direction

If x ∈ S , then d ∈ ℜn is a feasible direction from x if a small
step in this direction does not lead outside the set S (cf. the
simplex method for LP)

Formally: d defines a feasible direction at x ∈ S if

∃δ > 0 such that x + td ∈ S for all t ∈ [0, δ]

◮ Definition Active constraints

The active constraints at x ∈ S are those that are fulfilled
with equality, i.e., I(x) = { i = 1, . . . ,m | gi (x) = 0 }

◮ Draw!!

Lecture 12 Applied Optimization



Optimality conditions (Ch. 11)

◮ Definition Feasible directions for linear

constraints

Suppose that gi (x) = aT

i
x− bi , i = 1, . . . ,m. Then, the set of

feasible directions at x is {d ∈ ℜn | aT

i
d ≤ 0, i ∈ I(x) }

◮ Necessary optimality conditions
If x∗ ∈ S is a local minimum of f over S then ∇f (x∗)Td ≥ 0
holds for all feasible directions d at x∗

(i.e., at x∗ there are no feasible descent directions)
◮ Necessary and sufficient optimality conditions

Suppose S is non-empty and convex and f convex. Then,
x∗ is a global minimum of f over S

⇔ ∇f (x∗)T(x − x∗) ≥ 0 holds for all x ∈ S

x

xx

x x∗x∗

SS

−∇f (x∗)
−∇f (x∗)
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The Karush-Kuhn-Tucker conditions: Necessary

conditions for optimality

◮ Assume that the functions gi : ℜn 7→ ℜ, i = 1, . . . ,m, are
convex and differentiable and that there exists a point x ∈ S

such that gi (x) < 0, i = 1, . . . ,m.

◮ Further, assume that f : ℜn 7→ ℜ is differentiable.

◮ If x∗ ∈ S is a local minimum of f over S , then there exists a
vector µ ∈ ℜm such that

∇f (x∗) +

m
∑

i=1

µi∇gi (x
∗) = 0n

µigi (x
∗) = 0, i = 1, . . . ,m

gi (x
∗) ≤ 0, i = 1, . . . ,m

µ ≥ 0m
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Geometry of the Karush-Kuhn-Tucker conditions
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Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions.
At a local minimum, minus the gradient of the objective can be expressed
as a non-negative linear combination of the gradients of the active
constraints at this point.
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The Karush-Kuhn-Tucker conditions: Sufficient

conditions under convexity

◮ Assume that the functions f , gi : ℜn 7→ ℜ, i = 1, . . . ,m, are
convex and differentiable.

◮ If the conditions

∇f (x∗) +
m

∑

i=1

µi∇gi (x
∗) = 0n

µigi (x
∗) = 0, i = 1, . . . ,m

µ ≥ 0m

hold, then x∗ ∈ S is a global minimum of f over
S = { x ∈ ℜn | gi (x) ≤ 0, i = 1, . . . ,m }.

◮ The Karush-Kuhn-Tucker conditions can also be stated for
optimization problems with equality constraints
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The optimality conditions can be used to..

◮ verify an (local) optimal solution

◮ solve certain special cases of nonlinear programs (e.g.
quadratic)

◮ algorithm construction

◮ derive properties of a solution to a non-linear program
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Example

minimize f (x) := 2x2

1
+ 2x1x2 + x2

2
− 10x1 − 10x2

subject to x2

1
+ x2

2
≤ 5

3x1 + x2 ≤ 6

◮ Is x0 = (1, 2)T a Karush-Kuhn-Tucker point?

◮ An optimal solution?

◮ ∇f (x) = (4x1 + 2x2 − 10, 2x1 + 2x2 − 10)T,

∇g1(x) = (2x1, 2x2)
T, ∇g2(x) = (3, 1)T

⇒









4x0

1
+ 2x0

2
− 10 + 2x0

1
µ1 + 3µ2 = 0

2x0

1
+ 2x0

2
− 10 + 2x0

2
µ1 + µ2 = 0

µ1((x
0

1
)2 + (x0

2
)2 − 5) = µ2(3x0

1
+ x0

2
− 6) = 0

µ1, µ2 ≥ 0









⇔









2µ1 + 3µ2 = 2
4µ1 + µ2 = 4

0µ1 = −µ2 = 0
µ1, µ2 ≥ 0









⇒ µ2 = 0 ⇒ µ1 = 1 ≥ 0
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Example, continued

◮ The Karush-Kuhn-Tucker conditions hold.

◮ Optimal? Check convexity!

◮ ∇2f (x) =

(

4 2
2 2

)

, ∇2g1(x) =

(

2 0
0 2

)

, ∇2g2(x) = 02×2

⇒ f , g1, and g2 are convex ⇒ x0 = (1, 2)T is an optimal
solution f (x0) = −20
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