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Direction finding methods: Steepest descent

(Ch. 10.1)

> Let the search direction be minus the gradient (minimization):
d* = —VF(x")

Pros:

» Requires only gradient information

» Not so computationally demanding per iteration
Cons:

» (Very) Slow convergence towards a stationary point

» Each direction d* is perpendicular to the previous one d*~1
(if the line search (i.e., the steplength optimization problem) is
solved exactly)—the iterate sequence is “zig-zagging”
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Direction finding methods: Newton’s method

(Ch. 10.2)

» Make use of second derivative information (curvature).
» Requires f to be twice continuously differentiable.
» Taylor expansion of f around x:
ox(d) := f(x) + VF(x)Td + 3dTV?F(x)d (= f(x + d))
» We wish to find a direction d € R" such that
Vapx(d) = VF(x) + V2f(x)d = VF(x) + He(x)d = 0"
(a stationary point for o) = d¥ = —H¢(x*)"1VF(xK)
» Observe that line search not needed, t = 1 (unit step)

» Only look for stationary points for ¢y = same d* for
min/max problems

» If f is quadratic (i.e., f(x) = a+ cTx + xTQx), then
Newtons method finds a stationary point for f in one
iteration. Verify this!
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Direction finding methods: Newton’s method

PRros:
» Fast convergence
CONSs:

» Convergens towards a stationary point only guaranteed if
starting “sufficiently close” to one

» If f is convex around the starting point x (i.e., Hr(x) positive
definite), then Newton's method converges towards a local
minimum

» Newton does not distinguish between different types of
stationary points

» Requires more computations per iteration (matrix inversions)

» Does not always work (if det(H¢(x¥)) = 0)
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Practical modifications of Newton’s method

(minimization) (Ch. 10.3)

» Start using Steepest descent, then change to Newton's
method

» Use d* = —M(x¥)V£(x¥), where M(x*) ~ H¢(x¥)~! and
M(x¥) is positive definite (Quasi-Newton)

» Efficient updates of the inverse should be used

> Let M(x¥) = (He(x) + E")_:l such that M(x¥) becomes
positive definite, e.g., EX = 71 (which shifts all the
eigenvalues by ++%)

» This is called the Levenberg-Marquardt modification

» Note: for large values of v¥, this makes d* resemble the
steepest descent direction
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Optimization over convex sets

Up to now, we have looked at unconstrained optimization. Now:
minimize f(x) subject tox € S
where S = {x € R" | gi(x) <0,i=1,...,m} is a convex set

» Definition FEASIBLE DIRECTION
If x € S, then d € R" is a feasible direction from x if a small
step in this direction does not lead outside the set S (cf. the
simplex method for LP)

Formally: d defines a feasible direction at x € S if
36 > 0 such that x+ td € S for all t € [0, d]

» Definition ACTIVE CONSTRAINTS
The active constraints at x € S are those that are fulfilled
with equality, i.e., Z(x) = {i=1,...,m|gi(x) =0}

» Draw!!
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Optimality conditions (Ch. 11)

» Definition FEASIBLE DIRECTIONS FOR LINEAR
CONSTRAINTS
Suppose that gj(x) =alx — b;, i =1,...,m. Then, the set of
feasible directions at x is {d € ®"|ald <0,/ € Z(x) }
» Necessary optimality conditions
If x* € S is a local minimum of f over S then Vf(x*)td >0
holds for all feasible directions d at x*
(i.e., at x* there are no feasible descent directions)
» Necessary and sufficient optimality conditions
Suppose S is non-empty and convex and f convex. Then,
x* is a global minimum of f over S
< Vi(x x—x)>0ho|dsfora|lx€5

—Vf
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The Karush-Kuhn-Tucker conditions: Necessary

conditions for optimality

» Assume that the functions g; : R" — R, i=1,...,m, are
convex and differentiable and that there exists a point X € S
such that gi(x) <0, i=1,...,m.

» Further, assume that f : ®” — R is differentiable.

> If x* € S is alocal minimum of f over S, then there exists a
vector i € R™ such that

Vf(x*)—i—Zu,-Vg,-(x*) = 0"

i=1

wigi(x*) 0, i=1,...,m
8i(x") /
m

IV IA
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Geometry of the Karush-Kuhn-Tucker conditions

Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions.
At a local minimum, minus the gradient of the objective can be expressed
as a non-negative linear combination of the gradients of the active
constraints at this point.
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The Karush-Kuhn-Tucker conditions: Sufficient

conditions under convexity

» Assume that the functions f, g - R"— R, i=1,...,m, are
convex and differentiable.

» If the conditions

Vf(x*)—i—Zu,-Vg,-(x*) =0
i=1
wigi(x*) = 0, i=1,...,m
po > 07

hold, then x* € S is a global minimum of f over
S={xeR"|gi(x) <0,i=1,...,m}.

» The Karush-Kuhn-Tucker conditions can also be stated for
optimization problems with equality constraints
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The optimality conditions can be used to..

» verify an (local) optimal solution

» solve certain special cases of nonlinear programs (e.g.
quadratic)

» algorithm construction

» derive properties of a solution to a non-linear program
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minimize f(x) := 2x? + 2x1x + x5 — 10x; — 10x;
subject to xt+x3 < 5
3x1+x2 < 6

> Is x% = (1,2)" a Karush-Kuhn-Tucker point?

» An optimal solution?

> Vf(x) = (4X1 + 2x0 — 10,2x3 + 2x0 — 10)T,
Vai(x) = (2x1,2x%)7T, Vaa(x) = (3,1)T

4x0 4+ 2x9 — 10+ 2x%u1 + 3pp = 0| [ 2p1 + 3pp =2
N 250 4+ 2x9 — 10+ 2xQu1 + pp = 0 4py 4+ po =4
1 ((4)? + (0)? = 5) = 12(3x) +x3 —6) =0 "|O0p1 = —p2 =0
H1, p2 > 0 pa, p2 =0

= ;LQZO = ;le].ZO
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Example, continued

» The Karush-Kuhn-Tucker conditions hold.

» Optimal? Check convexity!
4 2 2 0
2 _ 2 _ 2 — (12x2
>Vf(x)—<2 2),Vg1(x)—<0 2),Vg2(x)—0

= f, g1, and g are convex = x° = (1,2)" is an optimal
solution f(x%) = —20
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