MVE165/MMG630, Applied Optimization Lecture 12 Unconstrained non-linear programming algorithms and the KKT conditions for constrained nonlinear programs

Ann-Brith Strömberg

2010-04-23

Direction finding methods: Steepest descent (Ch. 10.1)

• Let the search direction be minus the gradient (minimization):

$$\mathbf{d}^k = -\nabla f(\mathbf{x}^k)$$

Pros:

- Requires only gradient information
- Not so computationally demanding per iteration

Cons:

- (Very) Slow convergence towards a stationary point
- Each direction d^k is perpendicular to the previous one d^{k-1} (if the line search (i.e., the steplength optimization problem) is solved exactly)—the iterate sequence is "zig-zagging"

Direction finding methods: Newton's method (Ch. 10.2)

- Make use of second derivative information (curvature).
- Requires f to be twice continuously differentiable.
- ► Taylor expansion of f around x: $\varphi_{\mathbf{x}}(\mathbf{d}) := f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}}\mathbf{d} + \frac{1}{2}\mathbf{d}^{\mathrm{T}}\nabla^{2}f(\mathbf{x})\mathbf{d} \ (\approx f(\mathbf{x} + \mathbf{d}))$
- ► We wish to find a direction $\mathbf{d} \in \Re^n$ such that $\nabla_{\mathbf{d}} \varphi_{\mathbf{x}}(\mathbf{d}) = \nabla f(\mathbf{x}) + \nabla^2 f(\mathbf{x}) \mathbf{d} = \nabla f(\mathbf{x}) + H_f(\mathbf{x}) \mathbf{d} = \mathbf{0}^n$ (a stationary point for $\varphi_{\mathbf{x}}$) $\Rightarrow \mathbf{d}^k = -\mathbf{H}_f(\mathbf{x}^k)^{-1} \nabla f(\mathbf{x}^k)$
- Observe that line search not needed, t = 1 (unit step)
- Only look for stationary points for φ_x ⇒ same d^k for min/max problems
- If f is quadratic (i.e., f(x) = a + c^Tx + ½x^TQx), then Newtons method finds a stationary point for f in one iteration. Verify this!

個 と く ヨ と く ヨ と

Pros:

Fast convergence

Cons:

- Convergens towards a stationary point only guaranteed if starting "sufficiently close" to one
- If f is convex around the starting point x (i.e., H_f(x) positive definite), then Newton's method converges towards a local minimum
- Newton does *not* distinguish between different types of stationary points
- Requires more computations per iteration (matrix inversions)
- Does not always work (if $det(\mathbf{H}_f(\mathbf{x}^k)) = 0$)

Practical modifications of Newton's method (minimization) (Ch. 10.3)

- Start using Steepest descent, then change to Newton's method
- Use $\mathbf{d}^k = -\mathbf{M}(\mathbf{x}^k) \nabla f(\mathbf{x}^k)$, where $\mathbf{M}(\mathbf{x}^k) \approx \mathbf{H}_f(\mathbf{x}^k)^{-1}$ and $\mathbf{M}(\mathbf{x}^k)$ is positive definite (Quasi-Newton)
- Efficient updates of the inverse should be used
- Let M(x^k) = (H_f(x^k) + E^k)⁻¹ such that M(x^k) becomes positive definite, e.g., E^k = γ^kI (which shifts all the eigenvalues by +γ^k)
- This is called the Levenberg-Marquardt modification
- ► Note: for large values of γ^k, this makes d^k resemble the steepest descent direction

▲◎▶ ▲ 臣▶ ▲ 臣▶ -

Optimization over convex sets

Up to now, we have looked at unconstrained optimization. Now: minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$ where $S = \{ \mathbf{x} \in \Re^n | g_i(\mathbf{x}) \le 0, i = 1, ..., m \}$ is a convex set

Definition FEASIBLE DIRECTION

If $\mathbf{x} \in S$, then $\mathbf{d} \in \Re^n$ is a feasible direction from \mathbf{x} if a small step in this direction does not lead outside the set S (cf. the simplex method for LP)

Formally: **d** defines a feasible direction at $\mathbf{x} \in S$ if

 $\exists \delta > 0$ such that $\mathbf{x} + t\mathbf{d} \in S$ for all $t \in [0, \delta]$

Definition ACTIVE CONSTRAINTS

The active constraints at $\mathbf{x} \in S$ are those that are fulfilled with equality, i.e., $\mathcal{I}(\mathbf{x}) = \{ i = 1, ..., m | g_i(\mathbf{x}) = 0 \}$

► DRAW!!

御 と く ヨ と く ヨ と

Optimality conditions (Ch. 11)

► **Definition** FEASIBLE DIRECTIONS FOR LINEAR

CONSTRAINTS

Suppose that $g_i(\mathbf{x}) = \mathbf{a}_i^{\mathrm{T}}\mathbf{x} - b_i$, i = 1, ..., m. Then, the set of feasible directions at \mathbf{x} is $\{\mathbf{d} \in \Re^n | \mathbf{a}_i^{\mathrm{T}}\mathbf{d} \leq 0, i \in \mathcal{I}(\mathbf{x})\}$

Necessary optimality conditions

If $\mathbf{x}^* \in S$ is a local minimum of f over S then $\nabla f(\mathbf{x}^*)^{\mathrm{T}} \mathbf{d} \ge 0$ holds for all feasible directions \mathbf{d} at \mathbf{x}^*

(i.e., at \mathbf{x}^* there are no feasible descent directions)

Necessary and sufficient optimality conditions

Suppose S is non-empty and convex and f convex. Then,

 \mathbf{x}^* is a global minimum of f over S

 $\Leftrightarrow \nabla f(\mathbf{x}^*)^{\mathrm{T}}(\mathbf{x}-\mathbf{x}^*) \geq 0 \text{ holds for all } \mathbf{x} \in S$

The Karush-Kuhn-Tucker conditions: Necessary conditions for optimality

- Assume that the functions g_i : ℜⁿ → ℜ, i = 1,..., m, are convex and differentiable and that there exists a point x̄ ∈ S such that g_i(x̄) < 0, i = 1,..., m.</p>
- Further, assume that $f : \Re^n \mapsto \Re$ is differentiable.
- If x^{*} ∈ S is a local minimum of f over S, then there exists a vector µ ∈ ℜ^m such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \mu_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}^n$$
$$\mu_i g_i(\mathbf{x}^*) = 0, \qquad i = 1, \dots, m$$
$$g_i(\mathbf{x}^*) \leq 0, \qquad i = 1, \dots, m$$
$$\boldsymbol{\mu} \geq \mathbf{0}^m$$

Geometry of the Karush-Kuhn-Tucker conditions

Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions. At a local minimum, minus the gradient of the objective can be expressed as a non-negative linear combination of the gradients of the active constraints at this point.

The Karush-Kuhn-Tucker conditions: Sufficient conditions under convexity

- Assume that the functions f, g_i : ℜⁿ → ℜ, i = 1,..., m, are convex and differentiable.
- If the conditions

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \mu_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}^n$$
$$\mu_i g_i(\mathbf{x}^*) = 0, \qquad i = 1, \dots, m$$
$$\boldsymbol{\mu} \geq \mathbf{0}^m$$

hold, then $\mathbf{x}^* \in S$ is a global minimum of f over $S = \{ \mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \le 0, i = 1, ..., m \}.$

 The Karush-Kuhn-Tucker conditions can also be stated for optimization problems with equality constraints verify an (local) optimal solution

- solve certain special cases of nonlinear programs (e.g. quadratic)
- algorithm construction
- derive properties of a solution to a non-linear program

Example

$$\begin{array}{rll} \text{minimize} & f(\mathbf{x}) := 2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2\\ \text{subject to} & x_1^2 + x_2^2 & \leq & 5\\ & 3x_1 + x_2 & \leq & 6 \end{array}$$

▶ Is $\mathbf{x}^0 = (1, 2)^T$ a Karush-Kuhn-Tucker point?

An optimal solution?

►
$$\nabla f(\mathbf{x}) = (4x_1 + 2x_2 - 10, 2x_1 + 2x_2 - 10)^{\mathrm{T}},$$

 $\nabla g_1(\mathbf{x}) = (2x_1, 2x_2)^{\mathrm{T}}, \ \nabla g_2(\mathbf{x}) = (3, 1)^{\mathrm{T}}$

$$\Rightarrow \begin{bmatrix} 4x_1^0 + 2x_2^0 - 10 + 2x_1^0\mu_1 + 3\mu_2 = 0\\ 2x_1^0 + 2x_2^0 - 10 + 2x_2^0\mu_1 + \mu_2 = 0\\ \mu_1((x_1^0)^2 + (x_2^0)^2 - 5) = \mu_2(3x_1^0 + x_2^0 - 6) = 0\\ \mu_1, \mu_2 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2\mu_1 + 3\mu_2 = 2\\ 4\mu_1 + \mu_2 = 4\\ 0\mu_1 = -\mu_2 = 0\\ \mu_1, \mu_2 \ge 0 \end{bmatrix}$$
$$\Rightarrow \mu_2 = 0 \Rightarrow \mu_1 = 1 \ge 0$$

▲圖> ▲屋> ▲屋>

3

► The Karush-Kuhn-Tucker conditions hold.

Optimal? Check convexity!

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix}, \ \nabla^2 g_1(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \ \nabla^2 g_2(\mathbf{x}) = \mathbf{0}^{2 \times 2}$$

 \Rightarrow f, g₁, and g₂ are convex \Rightarrow $\mathbf{x}^0 = (1,2)^{\mathrm{T}}$ is an optimal solution $f(\mathbf{x}^0) = -20$