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Constrained nonlinear programming models (Ch. 12)

◮ The general model can be expressed as

minimize x∈ℜn f (x)

subject to gi (x) ≤ 0, i ∈ L,

hi (x) = 0, i ∈ E .

◮ Convex program:
f convex, gi convex, i ∈ L, hi (x) = aT

i x − bi , i ∈ E

◮ Any local optimum is a global optimum

◮ Quadratic program:
f (x) = cTx + 1

2x
TQx, gi (x) = aT

i x − bi , i ∈ L,

hi (x) = kT

i x − ℓi , i ∈ E

◮ The KKT conditions lead to a linear system of inequalities +
complementarity
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An algorithm for minimizing a convex function over

a bounded polyhedron (Frank–Wolfe) (Ch.12.1)

minimize f (x) subject to x ∈ S

where f : ℜn 7→ ℜ is convex and S ⊂ ℜn is a bounded polyhedron

1. Choose x0 ∈ S (simplex, phase one) and ε > 0. Let
UB = f (x0), LB = −∞, k = 0

2. Solve the linear approximation (LP):

min
x∈S

zk(x) := f (xk) + ∇f (xk)T (x − xk) ⇒ x = xk
LP

Let dk = xk
LP

− xk and LB = max{LB, zk(xk
LP

)}
If UB− LB < ε, stop

3. Solve min
0≤t≤1

ϕ(t) := f (xk + t · dk) ⇒ t = tk

4. Let xk+1 = xk + tkd
k , UB = f (xk+1)

5. If UB− LB < ε, stop. Let k := k + 1 and go to step 2
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The Frank–Wolfe-algorithm

◮ Solves a non-linear optimization problem using

◮ a sequence of approximating, linear (easier) problems, and
◮ a sequence of one dimensional (easy) non-linear problems.

◮ Estimates of the optimal objective value is used to terminate
the procedure at a guaranteed maximal deviation from an
optimal solution (ε > 0).
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f (x)

Under convexity: zk(x
k
LP

) ≤ f (x∗) ≤ f (xk)

zk (xk) = f (xk)

zk(x
k
LP

)

zk(x)

xk
LP xk

x
S

Figur: Illustration of the Frank–Wolfe algorithm in ℜ1
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Figur: Step 1 of the Frank–Wolfe algorithm.
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An example solved by the Frank–Wolfe-algorithm

minimize f (x) = 3x2
1 + x2

2 − x1x2 − 3x2

subject to x1 + x2 ≥ 1
3x1 + x2 ≤ 3

x2 ≤ 1

◮ ∇f (x) =

(

6x1 − x2

2x2 − x1 − 3

)

◮ Hf (x) =

(

6 −1
−1 2

)

positive

definite ⇒ f strictly convex

◮ x0 =

(

1
0

)

◮ f (x0) = 3 ⇒ [LB, UB] = [−∞, 3]

x1

x2

x0

∇f (x0)
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Frank–Wolfe-example, continued

◮ z0(x) = 6x1 − 4x2 − 3 ⇒ x0
LP

=

(

0
1

)

◮ z0(x
0
LP

) = −7 ⇒ [LB, UB] = [−7, 3]

x0 + t · (x0
LP

− x0) =

(

1 − t

t

)

ϕ(t) = 3(1 − t)2 + t2 − (1 − t)t − 3t
ϕ′(t) = 10t − 10 = 0 ⇒ t0 = 1















◮ ⇒ x1 =

(

0
1

)

◮ f (x1) = −2 ⇒ [LB, UB] = [−7,−2]

◮ z1(x) = −x1 − x2 − 1 ⇒ x1
LP

=

(

2/3
1

)

◮ z1(x
1
LP

) = −8
3 ⇒ [LB, UB] =

[

−8
3 ,−2

]

x1

x2

x0

x0
LP

d0

∇f (x0)

x1

x2

x1
LPx1

d1

∇f (x1)
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Frank–Wolfe-example, continued

x1 + t · (x1
LP

− x1) =

(

2t/3
1

)

ϕ(t) = 4t2/3 − 2t/3 − 2
ϕ′(t) = 8t/3 − 2/3 = 0 ⇒ t1 = 1/4















◮ ⇒ x2 =

(

1/6
1

)

◮ f (x2)=−25
12⇒[LB, UB]=

[

−8
3 ,−25

12

]

◮ z2(x)=−7
6x2−

11
12⇒x2

LP
=

(

0
1

)

or

(

2/3
1

)

◮ z2(x
2
LP

)=−25
12 ⇒ [LB, UB]=

[

−25
12 ,−25

12

]

Optimal!

◮ x∗ = x2 =

(

1/6
1

)

, f (x∗) = −25
12

x1

x2

x2

∇f (x2)

x1

x2

x2
LP

x2
LP
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Penalty function methods (Ch. 12.3)

◮ Consider both inequality and equality constraints:

minimize x∈ℜn f (x)

subject to gi (x) ≤ 0, i ∈ L, (1)

hi (x) = 0, i ∈ E .

◮ Drop the constraints and add terms in the objective that
penalize infeasibile solutions

minimizex∈ℜn Fµ(x) := f (x) + µ
∑

i∈L∪E

αi (x) (2)

where µ > 0 and αi (x) =

{

= 0 if x satisfies constraint i

> 0 otherwise
◮ Common penalty functions (which of these are

differentiable?):
i ∈ L: αi (x) = max{0, gi(x)} or αi (x) = (max{0, gi(x)})

2

i ∈ E : αi (x) = |hi (x)| or αi(x) = |hi (x)|
2
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More about penalty function methods

◮ If an optimal solution x∗ to the unconstrained penalty problem
(2) is feasible in the original problem (1), it is optimal in (1)

◮ If the function gi is differentiable, then the corresponding
squared penalty function is also differentiable

◮ However, squared penalty functions are usually not exact:
Typically no value of µ > 0 exists such that an optimal
solution for (2) is optimal for the program (1)

◮ The non-squared penalties are exact:
There exists a finite value of µ > 0 such that an optimal
solution for (2) is optimal for the program (1)
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Squared and non-squared penalty functions

minimize x2 − 20 ln x subject to x ≥ 5
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x2−20 ln x+(max{0, 5−x})2

Figur: Squared and non-squared penalty function. gi differentiable =⇒
squared penalty function differentiable
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Squared penalty functions

◮ In practice: Start with a low value of µ > 0 and increase the
value as the computations proceed

◮ Example: minimize x2 − 20 ln x subject to x ≥ 5 (∗)
⇒ minimize x2 − 20 ln x + µ(max{0, 5 − x})2 (∗∗)
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x2 − 20 ln x

Figur: Squared penalty function: 6 ∃µ < ∞ such that an optimal solution
for (∗∗) is optimal (feasible) for (∗)
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Non-squared penalty functions

◮ In practice: Start with a low value of µ > 0 and increase the
value as the computations proceed

◮ Example: minimize x2 − 20 ln x subject to x ≥ 5 (+)
⇒ minimize x2 − 20 ln x + µ max{0, 5 − x} (++)
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Figur: Non-squared penalty function: For µ ≥ 6 the optimal solution for
(++) is optimal (and feasible) for (+)

Lecture 13 Applied Optimization



Sequential unconstrained penalty function algorithm

1. Choose µ0 > 0, a starting solution x0, escalation factor β > 1,
and iteration counter t := 0

2. Solve

minimizex∈ℜn Fµ(x) := f (x) + µ
∑

i∈L∪E

αi (x) (2)

with µ = µt , starting from xt ⇒ optimal solution xt+1

3. If xt+1 is (sufficiently close to) feasible in

minimize x∈ℜn f (x)

subject to gi (x) ≤ 0, i ∈ L, (1)

hi (x) = 0, i ∈ E .

then stop.
Enlarge the penalty parameter: µt+1 := βµt , let t := t + 1
and repeat from 2.
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Barrier function methods (Ch. 12.4)

◮ Consider only inequality constraints:

minimize x∈ℜn f (x)

subject to gi (x) ≤ 0, i ∈ L. (3)

◮ Drop the constraints and add terms in the objective that
prevents from approaching the boundary of the feasible set

minimizex∈ℜn Fµ(x) := f (x) + µ
∑

i∈L

αi (x) (4)

where µ > 0 and αi (x) → +∞ as gi (x) → 0 (as constraint i

approaches being active)

◮ Common barrier functions:
◮ αi (x) = − ln[−gi(x)] or αi (x) = −1

gi (x)
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Logarithmic barrier functions

◮ Choose µ > 0 and decrease it as the computations proceed
◮ Example: minimize x2 − 20 ln x subject to x ≥ 5
⇒ minimize x>5 x2 − 20 ln x − µ ln(x − 5)
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Figur: Logarithmic barrier function: µ ∈ {10, 5, 2.5, 1.25, 0.625, 0.3125}
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Fractional barrier functions

◮ Choose µ > 0 and decrease it as the computations proceed
◮ Example: minimize x2 − 20 ln x subject to x ≥ 5
⇒ minimize x>5 x2 − 20 ln x + µ

x−5
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Figur: Fractional barrier function: µ ∈ {10, 5, 2.5, 1.25, 0.625}
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More about (fractional) barrier function methods

◮ If µ > 0 and the true optimum lies on the boundary of the
feasible set (i.e., gi (x

∗) = 0 for some i ∈ L) then the optimum
of a barrier function can never equal the true optimum

◮ Under mild assumptions, the sequence of unconstrained
barrier optima converges (in the limit) to the true optimum as
µ → 0+
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Sequential unconstrained barrier function algorithm

minimize x∈ℜn f (x)

subject to gi (x) ≤ 0, i ∈ L (3)

1. Choose µ0 > 0, a feasible interior starting solution x0 (such
that gi (x

0) < 0, i ∈ L), reduction factor β < 1, and iteration
counter t := 0

2. Solve

minimizex∈ℜn Fµ(x) := f (x) + µ
∑

i∈L

αi (x) (4)

with µ = µt , starting from xt ⇒ optimal solution xt+1

3. If µ is sufficiently small, stop. Otherwise, decrease the barrier
parameter: µt+1 := βµt , let t := t + 1, and repeat from 2.
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Quadratic programming (QP) (Ch. 12.2)

◮ Example (quadratic convex objective, linear constraints):

minimize f (x) = −2x1 − 6x2 + x2
1 − 2x1x2 + 2x2

2

subject to x1 + x2 ≤ 2
− x1 + 2x2 ≤ 2

x1 , x2 ≥ 0

◮ General model:

minimize cTx +
1

2
xTQx subject to Ax− b ≤ 0,−Ix ≤ 0

where

c=

(

−2
−6

)

, Q=

(

2 −2
−2 4

)

, A=

(

1 1
−1 2

)

, b=

(

2
2

)

,

I=

(

1 0
0 1

)
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QP: The Karush-Kuhn-Tucker conditions

minimize cTx +
1

2
xTQx subject to Ax− b ≤ 0,−Ix ≤ 0

c + Qx + ATµ − Iλ = 0
Ax ≤ b
−Ix ≤ 0

µ,λ ≥ 0

µT(Ax − b) = λTx = 0

Slack variables s ≥ 0 of the constraints Ax ≤ b: Ax + s = b
⇒ The Karush-Kuhn-Tucker constraints reduce to:

Qx + ATµ − Iλ = −c
Ax + Is = b

x,µ,λ, s ≥ 0
µisi = λjxj = 0 for all i , j

Lecture 13 Applied Optimization



QP: The Karush-Kuhn-Tucker conditions

◮ For convex optimization problems ⇒ Karush-Kuhn-Tucker
conditions are sufficient for a global optimum

⇒ A solution (x,µ,λ, s) that fulfils the Karush-Kuhn-Tucker
conditions is optimal for convex quadratic programs (QP)

◮ Not all quadratic programs are convex, though!!!

◮ The KKT-system is linear, with variables: x,µ,λ, s ≥ 0

◮ Additional conditions: µisi = λjxj = 0 for all i , j

⇒ Linear programming: Simplex algorithm with restricted basis:

◮ Either µi = 0 or si = 0. Either λj = 0 or xj = 0.

⇒ If, e.g., s2 is in the basis (s2 > 0), µ2 may not enter the basis

◮ Introduce artificial variables where needed and solve a phase–1
problem
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QP: The phase–1 problem—The example

◮ Example (quadratic convex objective, linear constraints):

minimize f (x) = −2x1 − 6x2 + x2
1 − 2x1x2 + 2x2

2

subject to x1 + x2 ≤ 2
− x1 + 2x2 ≤ 2

x1 , x2 ≥ 0

◮

minimize w = a1 +a2

subject to 2x1 −2x2 +µ1 −µ2 −λ1 +a1 = 2
−2x1 +4x2 +µ1 +2µ2 −λ2 +a2 = 6

x1 +x2 +s1 = 2
−x1 +2x2 +s2 = 2
x1, x2, µ1, µ2, λ1, λ2, s1, s2, a1, a2 ≥ 0
µ1s1 = 0, µ2s2 = 0, λ1x1 = 0, λ2x2 = 0

◮ Find a starting base by reformulating: a1, a2, s1, s2 ⇒
w − a1 − a2 = w + 2x2 + 2λ1 + λ2 − µ1 − µ2 − 8 = 0
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The phase–1 problem—reformulated

◮ Minimize w , subject to:

−w −2x2 −2µ1 −µ2 +λ1 +λ2 = −8
2x1 −2x2 +µ1 −µ2 −λ1 +a1 = 2

−2x1 +4x2 +µ1 +2µ2 −λ2 +a2 = 6
x1 +x2 +s1 = 2

−x1 +2x2 +s2 = 2
x1, x2, µ1, µ2, λ1, λ2, s1, s2, a1, a2 ≥ 0

under the complementarity conditions:
µ1s1 = µ2s2 = λ1x1 = λ2x2 = 0

◮ Solution to the phase–1 problem on next page...
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Solution to the phase–1 problem

basis w x1 x2 µ1 µ2 λ1 λ2 s1 s2 a1 a2 RHS

w -1 0 -2 -2 -1 1 1 0 0 0 0 -8 x2 in?
a1 0 2 -2 1 -1 -1 0 0 0 1 0 2 λ2 = 0
a2 0 -2 4 1 2 0 -1 0 0 0 1 6 ⇒ OK
s1 0 1 1 0 0 0 0 1 0 0 0 2 s2 out
s2 0 -1 2 0 0 0 0 0 1 0 0 2

w -1 -1 0 -2 -1 1 1 0 1 0 0 -6 µ1 in?
a1 0 1 0 1 -1 -1 0 0 1 1 0 4 s1 basic
a2 0 0 0 1 2 0 -1 0 -2 0 1 2 ⇒ no
s1 0 3/2 0 0 0 0 0 1 -1/2 0 0 1 x1 in?
x2 0 -1/2 1 0 0 0 0 0 1/2 0 0 1 OK, s1 out

w -1 0 0 -2 -1 1 1 2/3 2/3 0 0 -16/3 µ1 in?
a1 0 0 0 1 -1 -1 0 -2/3 4/3 1 0 10/3 s1 = 0
a2 0 0 0 1 2 0 -1 0 -2 0 1 2 ⇒ OK
x1 0 1 0 0 0 0 0 2/3 -1/3 0 0 2/3 a2 out
x2 0 0 1 0 0 0 0 1/3 1/3 0 0 4/3

w -1 0 0 0 3 1 -1 2/3 -10/3 0 2 -4/3 s2 in?
a1 0 0 0 0 -3 -1 1 -2/3 10/3 1 -1 4/3 µ2 = 0
µ1 0 0 0 1 2 0 -1 0 -2 0 1 2 ⇒ OK
x1 0 1 0 0 0 0 0 2/3 -1/3 0 0 2/3 a1 out
x2 0 0 1 0 0 0 0 1/3 1/3 0 0 4/3

w -1 0 0 0 0 0 0 0 0 1 1 0 optimum
s2 0 0 0 0 -9/10 -3/10 3/10 -1/5 1 3/10 -3/10 2/5
µ1 0 0 0 1 1/5 -3/5 -2/5 -2/5 0 3/5 2/5 14/5
x1 0 1 0 0 -3/10 -1/10 1/10 3/5 0 1/10 -1/10 4/5
x2 0 0 1 0 3/10 1/10 -1/10 2/5 0 -1/10 1/10 6/5
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Optimal solution to the phase–1 problem

The optimal solution to the phase–1 problem is given by:









x∗
1 = 4/5, x∗

2 = 6/5
µ∗

1 = 14/5, µ∗
2 = 0

λ∗
1 = 0, λ∗

2 = 0
s∗1 = 0, s∗2 = 2/5









Note that:
µ1s1 = µ2s2 = λ1x1 = λ2x2 = 0

The original QP:

minimize f (x) = −2x1 − 6x2 + x2
1 − 2x1x2 + 2x2

2

subject to x1 + x2 ≤ 2
− x1 + 2x2 ≤ 2

x1 , x2 ≥ 0

⇒ f (x∗) = −36/5
What if f was not convex (i.e., Q not positive (semi)definite)?
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Graphical illustration
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x∗

−∇f (x∗)
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