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Constrained nonlinear programming models (Ch.

» The general model can be expressed as

minimize yexpn  (X)
subject to gi(x) <0, iecL,
h,'(X) =0, ie€f.

» Convex program:
f convex, g convex,i € L, hij(x) = a,-Tx —bj,ic€é&

» Any local optimum is a global optimum

» Quadratic program
f( ) =cTx+ 3xTQx, gi(x) =afx — b;,i € L,
hi(x) = kIx E,,l €&
» The KKT conditions lead to a linear system of inequalities +
complementarity
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An algorithm for minimizing a convex function over

a bounded polyhedron (Frank—Wolfe) (Ch.12.1)

minimize f(x) subject tox € S

where f : R" +— R is convex and S C R" is a bounded polyhedron

1. Choose x° € S (simplex, phase one) and £ > 0. Let
UB = f(x°), LB = —o0, k=0
2. Solve the linear approximation (LP):

mig z2k(x) = FX)+ VAR T(x—x) = x=xfp
xe

Let d* = x¥, — xK and LB = max{LB, zx(xKp)}
If UB— LB < ¢, stop
3. Sol in o(t) =f(x*+t-d) = t=t¢
olve min ¢(t) :=f(x" +t-d%) K
4. Let xK1 = xk + t,d¥, UB = f(xk1)
5. If UB— LB < ¢, stop. Let k := k+ 1 and go to step 2
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The Frank—Wolfe-algorithm

» Solves a non-linear optimization problem using

» a sequence of approximating, linear (easier) problems, and
» a sequence of one dimensional (easy) non-linear problems.

» Estimates of the optimal objective value is used to terminate
the procedure at a guaranteed maximal deviation from an
optimal solution (¢ > 0).
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Under convexity: zx(xKp) < £(x*) < f(x¥)

f(x)

zi(xk) = F(xk

Zk(xfp)

k

XLp xk

Figur: lllustration of the Frank-Wolfe algorithm in R!
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Figur: Step 1 of the Frank—Wolfe algorithm.
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An example solved by the Frank—Wolfe-algorithm

minimize f(x) = 3xZ 4+ x3 — x1x2 — 3%

subject to x1+x > 1
3x1+x < 3 X2
X2 < 1
o 6X1 — X2
» Vi(x) = < 2 — xt -3 )
» H¢(x) = ( _613 _; > positive L
definite = f strictly convex x° x
> x0 — ( é > V£(x°)

» f(x°) =3 = [LB,UB] = [—00, 3]
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Frank—Wolfe-example, continued

>zo(x):6x1—4xz—3:>xgpz<(1)> %

» zo(x{p)=—-7 = [LB,UB] =[-7,3]

1—t AL
bt (xp—x) = ", A\
X
o(t) =31 —t)>+t>— (1 —t)t -3t %f(xo)
O(t)=10t—-10=0 = ¢t =1 X5

o (2)

» f(x})=-2 = [LB,UB] =[-7,-2]

1

X Lp
NS
>zl(x):—x1—x2—1:>xipz< { > V()

> z(x}p) = -8 = [LB,UB] = [-§, 2]

X1

Lecture 13 Applied Optimization



Frank—Wolfe-example, continued

bt (xlp —xt) = < 2t1/3 ) X0

o(t) = 4t2/3 — 2t/3 — 2

' (t)=8t/3-2/3=0=1t=1/4 )
> = x2 = ( 1{6 > Vf(ﬂ)&)q
= B8 e[ -3 ] .

> zp(x)=— %xz—% =x2 = < 1 > or (2{3>
> 2(x2p)=—23 = [LB,UB]=[-2, - &]
Optimal! Xiﬂ‘ ip
> xF=x2 = (1/6>, f(x*)=—-5
X1
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Penalty function methods (Ch. 12.3)

» Consider both inequality and equality constraints:

minimize yepn  f(X)
subject to  gj(x) <0, €L, (1)
h,'(X) =0, ie€f.

» Drop the constraints and add terms in the objective that
penalize infeasibile solutions

minimizexeqn Fl(x) = F(x) + 1 Y ai(x) (2)
ieLUE
=0 if x satisfies constraint /
where > 0 and «(x) = { =0 otherwise

» Common penalty functions (which of these are
differentiable?):

i€ L: ai(x)=max{0,g(x)} or a;(x)=(max{0,gi(x)})>

i€& ai(x)=|h(x)] or ai(x)=]|hi(x)?
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More about penalty function methods

» If an optimal solution x* to the unconstrained penalty problem
(2) is feasible in the original problem (1), it is optimal in (1)

» If the function g; is differentiable, then the corresponding
squared penalty function is also differentiable

» However, squared penalty functions are usually not exact:
Typically no value of > 0 exists such that an optimal
solution for (2) is optimal for the program (1)

» The non-squared penalties are exact:
There exists a finite value of x> 0 such that an optimal
solution for (2) is optimal for the program (1)
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Squared and non-squared penalty functions

minimize x?> — 20In x subject to x > 5

60

x% —20Inx
50F T 7 x?=20 In x+max{0, 5—x} ||
\ = = x?-20In x+(max{0, 5—x})?

40t \

301

20

Figur: Squared and non-squared penalty function. g; differentiable —
squared penalty function differentiable
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Squared penalty functions

» In practice: Start with a low value of x> 0 and increase the
value as the computations proceed
» Example: minimize x2 — 20 In x subject to x > 5 (%)
= minimize x> — 20 In x + p(max{0,5 — x})? (%)

25—

20

Figur: Squared penalty function: Ap < oo such that an optimal solution
for (xx) is optimal (feasible) for (x)
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Non-squared penalty functions

» In practice: Start with a low value of x> 0 and increase the
value as the computations proceed

» Example: minimize x2 — 20 In x subject to x > 5 (+)

= minimize x> — 20In x + pmax{0,5 — x} (++)

25

20

Figur: Non-squared penalty function: For u > 6 the optimal solution for
(++) is optimal (and feasible) for (+)
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Sequential unconstrained penalty function algorithm

0

1. Choose g > 0, a starting solution x”, escalation factor 3 > 1,

and iteration counter t := 0
2. Solve

minimizexegn  Fu(x) == f(x) + 1 Z aj(x) (2)
ieLuE
with p = pu¢, starting from x! = optimal solution x*?
3. If xtT1 s (sufficiently close to) feasible in

minimize yeqn  f(X)
subject to  gj(x) <0, €L, (1)
hi(x) =0, i€&.
then stop.

Enlarge the penalty parameter: pi41 := B, let t:=t+1
and repeat from 2.
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Barrier function methods (Ch. 12.4)

» Consider only inequality constraints:

minimize yexn  f(X)
subject to  gj(x) <0, i€L. (3)

» Drop the constraints and add terms in the objective that
prevents from approaching the boundary of the feasible set

minimizeycyin Fu(x) =f(x)+ Z ai(x) (4)
ieL

where 11 > 0 and «;j(x) — +o0o as gi(x) — 0 (as constraint /
approaches being active)

» Common barrier functions:
» aj(x) = —In[—gi(x)] or «ai(x)= g,_(,l()
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Logarithmic barrier functions

» Choose ;1 > 0 and decrease it as the computations proceed
» Example: minimize x? — 201In x subject to x > 5
= minimize y~5 x> —20Inx — pIn(x — 5)
50
40 -

308

Figur: Logarithmic barrier function: p € {10,5,2.5,1.25,0.625,0.3125}



Fractional barrier functions

» Choose ;1 > 0 and decrease it as the computations proceed
» Example: minimize x? — 201In x subject to x > 5
= minimize x5 x? —20Inx + 5

Figur: Fractional barrier function: p € {10,5,2.5,1.25,0.625}



More about (fractional) barrier function methods

» If 4 > 0 and the true optimum lies on the boundary of the
feasible set (i.e., gi(x*) = 0 for some i € L) then the optimum
of a barrier function can never equal the true optimum

» Under mild assumptions, the sequence of unconstrained
barrier optima converges (in the limit) to the true optimum as
p— 0%
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Sequential unconstrained barrier function algorithm

minimize yexn  f(X)
subject to  gj(x) <0, €L (3)

1. Choose 1o > 0, a feasible interior starting solution x° (such
that g;(x°) < 0, i € L), reduction factor 3 < 1, and iteration
counter t :==0

2. Solve
minimizeyeqn  Fl(x) := F(x) + 1> _ i(x) (4)
iel
with 11 = p¢, starting from x! = optimal solution x*?
3. If w is sufficiently small, stop. Otherwise, decrease the barrier

parameter: 41 := PBue, let t ;== t+ 1, and repeat from 2.



Quadratic programming (QP) (Ch. 12.2)

» Example (quadratic convex objective, linear constraints):

minimize f(x) = —2x; — 6xy + xZ — 2x1xp + 2x3
subject to x1 + x < 2
- x1 + 20 < 2
X1 5 X2 Z 0

» General model:
1 .
minimize cx + §xTQx subject to Ax—b <0,—Ix<0

where

() a2 i) z)(2)
(30)
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QP: The Karush-Kuhn-Tucker conditions

1
minimize cTx + EXTQx subject to Ax— b <0,—Ix<0

c + Qx + ATy — IX = 0
Ax < b

—Ix < 0

wx > 0

uT(Ax—b)=ATx = 0

Slack variables s > 0 of the constraints Ax <b: Ax+s=Db
= The Karush-Kuhn-Tucker constraints reduce to:

Qx + Atp — I = —c
Ax + Is = b
X, s > 0

wisi = Ajx; = O0foralli,j
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QP: The Karush-Kuhn-Tucker conditions

» For convex optimization problems =- Karush-Kuhn-Tucker
conditions are sufficient for a global optimum

= A solution (x, u, A, s) that fulfils the Karush-Kuhn-Tucker
conditions is optimal for convex quadratic programs (QP)

» Not all quadratic programs are convex, though!!!

» The KKT-system is linear, with variables: x, u, A,s > 0

» Additional conditions: p;s; = Ajx; = 0 for all /,;

= Linear programming: Simplex algorithm with restricted basis:
» Either u; = 0 or 5; = 0. Either \; = 0 or x; = 0.

= If, e.g., sz is in the basis (s, > 0), up may not enter the basis

» Introduce artificial variables where needed and solve a phase-1
problem
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QP: The phase—1 problem—The example

» Example (quadratic convex objective, linear constraints):

minimize f(x) = —2x; —6xx + X12 — 2x1%0 + 2x22
subject to x1 + x < 2
- x1 + 2x < 2
xx , x >0
>
minimize w = ai +an
subject to  2x3 2xp H+u1 2 =M1 +ay = 2
2x1 Hxo 1 Fu2 Ao +a, = 6
X1 +51 = 2
-1 +2x0 +5 = 2
X1, X2, p1, M2, A1, A2, s, S, a, a > 0

p1s1 =0, 25 =0, Aixx =0, Xoxo=0

» Find a starting base by reformulating: a1, az, s1, 5 =
W—a1—a=w+20+2 1+ —pu—pu—8=0
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The phase—1 problem—reformulated

» Minimize w, subject to:

—w 2xp 2p1  —p2 +tA1 o = -8
2x1 2xo i 2 =M +a1 = 2

2x1 Hx w1 up Ao +a, = 6

X1 —+x0 +s1 = 2

-1 +2x =455 = 2

X1, X2, M1, M2, A1, A2, S1, S, a1, a > 0

under the complementarity conditions:
H1S1 = p2s2 = A1xp = Aax2 = 0

» Solution to the phase—1 problem on next page...
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Solution to the phase—1 problem

basis | w X1 X 1 12 A1 by 51 s ay E RHS

w -1 0 -2 -2 -1 1 1 0 0 0 0 -8 Xp in?
a 0 2 -2 1 -1 -1 0 0 0 1 0 2 A2 =0
a 0 -2 4 1 2 0 -1 0 0 0 1 6 = OK
s 0 1 1 0 0 0 0 1 0 0 0 2 s out
S 0 -1 2 0 0 0 0 0 1 0 0 2

w 1 1 0 2 1 T T 0 T 0 0 i L in?
a 0 1 0 1 -1 -1 0 0 1 1 0 4 s1 basic
a 0 0 0 1 2 0 -1 0 -2 0 1 2 = no
st o 32 o 0 0 0 0 1 -1/2 0 0 1 X in?
x 0o 12 1 0 0 0 0 0 1/2 0 0 1 OK, s out
w 1 0 0 2 1 1 T 2/3 2/3 0 0 16/3 | py in?
ar 0 0 0 1 -1 -1 0 -2/3 473 1 0 10/3 s1=0
E% 0 0 0 1 2 0 -1 0 -2 0 1 2 = OK
x1 0 1 0 0 0 0 0 2/3 -1/3 0 0 2/3 ap out
X2 0 0 1 0 0 0 0 1/3 1/3 0 0 4/3

w 1 0 0 0 3 1 1 273 -10/3 0 2 473 | s n?
P 0 0 0 0 3 T T 273  10/3 T T 73 | pp=0
w1 0 0 0 1 2 0 1 0 2 0 1 2 = OK
x1 0 1 0 0 0 0 0 2/3  -1/3 0 0 2/3 | a1 out
X 0 0 1 0 0 0 0 1/3 1/3 0 0 4/3

w -1 0 0 0 0 0 0 0 0 1 1 0 optimum
A 0 0 0 0 -9/10 -3/10 3/10 -1/5 1 3/10 -3/10 2/5

1 0 0 0 1 /5 -3/5 -2/5 -2/5 0 3/5  2/5 | 14/5

x1 0 1 0 0 -3/10 -1/10 1/10 3/ 0 1/10 -1/10 | 4/5

X 0 0 1 0 3/10 1/10 -1/10 2/ 0 -1/10  1/10 | 6/5
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Optimal solution to the phase—1 problem

The optimal solution to the phase—1 problem is given by:

xi =4/5, x3=6/5

pi =14/5, us=0 Note that:
X{ = O, )\3 =0 H151 = U28 = )\1X1 = )\QXQ =0
s; =0, s; =2/5

The original QP:

minimize f(x) = —2x3 —6xx + X12 — 2x1X0 + 2x22
subject to x1 + x < 2
- x1 + 2x < 2
xx 5, x =0

= f(x*) = —-36/5
What if f was not convex (i.e., Q not positive (semi)definite)?
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Graphical illustration

X2

\ —VF(x#)

X1

AN
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