MVE165/MMG630, Applied Optimization Lecture 13 Constrained non-linear programming models and algorithms

Ann-Brith Strömberg

2010-04-27

Constrained nonlinear programming models (Ch. 12)

The general model can be expressed as

ľ

$$\begin{array}{ll} \text{minimize }_{\mathbf{x}\in\Re^n} & f(\mathbf{x})\\ \text{subject to} & g_i(\mathbf{x}) \leq 0, \quad i\in\mathcal{L},\\ & h_i(\mathbf{x})=0, \quad i\in\mathcal{E}. \end{array}$$

Convex program:

f convex, g_i convex, $i \in \mathcal{L}$, $h_i(\mathbf{x}) = \mathbf{a}_i^{\mathrm{T}} \mathbf{x} - b_i, i \in \mathcal{E}$

Any local optimum is a global optimum

Quadratic program:

$$\begin{split} f(\mathbf{x}) &= \mathbf{c}^{\mathrm{T}} \mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}, \ g_i(\mathbf{x}) = \mathbf{a}_i^{\mathrm{T}} \mathbf{x} - b_i, i \in \mathcal{L}, \\ h_i(\mathbf{x}) &= \mathbf{k}_i^{\mathrm{T}} \mathbf{x} - \ell_i, i \in \mathcal{E} \end{split}$$

 The KKT conditions lead to a linear system of inequalities + complementarity

An algorithm for minimizing a convex function over a bounded polyhedron (Frank–Wolfe) (Ch.12.1)

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$

where $f : \Re^n \mapsto \Re$ is convex and $S \subset \Re^n$ is a bounded polyhedron

1. Choose
$$\mathbf{x}^0 \in S$$
 (simplex, phase one) and $\varepsilon > 0$. Let $UB = f(\mathbf{x}^0)$, $LB = -\infty$, $k = 0$

2. Solve the linear approximation (LP):

$$\min_{\mathbf{x}\in S} z_k(\mathbf{x}) := f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T (\mathbf{x} - \mathbf{x}^k) \quad \Rightarrow \quad \mathbf{x} = \mathbf{x}_{\mathrm{LP}}^k$$

Let
$$\mathbf{d}^k = \mathbf{x}_{\text{LP}}^k - \mathbf{x}^k$$
 and $\text{LB} = \max\{\text{LB}, z_k(\mathbf{x}_{\text{LP}}^k)\}$
If $\text{UB} - \text{LB} < \varepsilon$, stop

3. Solve
$$\min_{0 \le t \le 1} \varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k) \Rightarrow t = t_k$$

4. Let $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \mathbf{d}^k$, UB = $f(\mathbf{x}^{k+1})$

5. If $UB - LB < \varepsilon$, stop. Let k := k + 1 and go to step 2

Solves a non-linear optimization problem using

- ▶ a sequence of approximating, linear (easier) problems, and
- a sequence of one dimensional (easy) non-linear problems.
- Estimates of the optimal objective value is used to terminate the procedure at a guaranteed maximal deviation from an optimal solution (ε > 0).

Figur: Illustration of the Frank–Wolfe algorithm in \Re^1

Figur: Step 1 of the Frank–Wolfe algorithm.

An example solved by the Frank–Wolfe-algorithm

Frank–Wolfe-example, continued

•
$$z_0(\mathbf{x}) = 6x_1 - 4x_2 - 3 \Rightarrow \mathbf{x}_{LP}^0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• $z_0(\mathbf{x}_{LP}^0) = -7 \Rightarrow [LB, UB] = [-7, 3]$
• $\mathbf{x}^0 + t \cdot (\mathbf{x}_{LP}^0 - \mathbf{x}^0) = \begin{pmatrix} 1 \\ t \\ t \end{pmatrix}$
• $\varphi(t) = 3(1 - t)^2 + t^2 - (1 - t)t - 3t$
• $\varphi'(t) = 10t - 10 = 0 \Rightarrow t_0 = 1$
• $\mathbf{x}_1^1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
• $f(\mathbf{x}^1) = -2 \Rightarrow [LB, UB] = [-7, -2]$
• $z_1(\mathbf{x}) = -x_1 - x_2 - 1 \Rightarrow \mathbf{x}_{LP}^1 = \begin{pmatrix} 2/3 \\ 1 \end{pmatrix}$
• $z_1(\mathbf{x}_{LP}^1) = -\frac{8}{3} \Rightarrow [LB, UB] = [-\frac{8}{3}, -2]$

Frank–Wolfe-example, continued

$$\mathbf{x}^{1} + t \cdot (\mathbf{x}_{LP}^{1} - \mathbf{x}^{1}) = \begin{pmatrix} 2t/3 \\ 1 \end{pmatrix}$$

$$\varphi(t) = 4t^{2}/3 - 2t/3 - 2$$

$$\varphi'(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\Rightarrow \mathbf{x}^{2} = \begin{pmatrix} 1/6 \\ 1 \end{pmatrix}$$

$$\varphi(t) = 4t^{2}/3 - 2t/3 - 2$$

$$\varphi'(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

$$\varphi(t) = 8t/3 - 2/3 = 0 \Rightarrow t_{1} = 1/4$$

Penalty function methods (Ch. 12.3)

Consider both inequality and equality constraints:

$$\begin{array}{ll} \text{minimize }_{\mathbf{x} \in \Re^n} & f(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) \leq 0, \quad i \in \mathcal{L}, \\ & h_i(\mathbf{x}) = 0, \quad i \in \mathcal{E}. \end{array}$$

Drop the constraints and add terms in the objective that penalize infeasibile solutions

minimize_{$$\mathbf{x}\in\Re^n$$} $F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i\in\mathcal{L}\cup\mathcal{E}} \alpha_i(\mathbf{x})$ (2)

where $\mu > 0$ and $\alpha_i(\mathbf{x}) = \begin{cases} = 0 & \text{if } \mathbf{x} \text{ satisfies constraint } i \\ > 0 & \text{otherwise} \end{cases}$

Common penalty functions (which of these are differentiable?):

$$i \in \mathcal{L}: \ \alpha_i(\mathbf{x}) = \max\{0, g_i(\mathbf{x})\} \text{ or } \alpha_i(\mathbf{x}) = (\max\{0, g_i(\mathbf{x})\})^2$$
$$i \in \mathcal{E}: \ \alpha_i(\mathbf{x}) = |h_i(\mathbf{x})| \text{ or } \alpha_i(\mathbf{x}) = |h_i(\mathbf{x})|^2$$

More about penalty function methods

- If an optimal solution x* to the unconstrained penalty problem
 (2) is feasible in the original problem (1), it is optimal in (1)
- If the function g_i is differentiable, then the corresponding squared penalty function is also differentiable
- However, squared penalty functions are usually not exact: Typically no value of µ > 0 exists such that an optimal solution for (2) is optimal for the program (1)
- The non-squared penalties are exact:

There exists a finite value of $\mu > 0$ such that an optimal solution for (2) is optimal for the program (1)

Squared and non-squared penalty functions

minimize $x^2 - 20 \ln x$ subject to $x \ge 5$

Figur: Squared and non-squared penalty function. g_i differentiable \implies squared penalty function differentiable

Squared penalty functions

- ▶ In practice: Start with a low value of $\mu > 0$ and increase the value as the computations proceed
- ► **Example:** minimize $x^2 20 \ln x$ subject to $x \ge 5$ (*) ⇒ minimize $x^2 - 20 \ln x + \mu (\max\{0, 5 - x\})^2$ (**)

Figur: Squared penalty function: $\not\exists \mu < \infty$ such that an optimal solution for (**) is optimal (feasible) for (*)

Non-squared penalty functions

- In practice: Start with a low value of µ > 0 and increase the value as the computations proceed
- ► **Example:** minimize $x^2 20 \ln x$ subject to $x \ge 5$ (+) ⇒ minimize $x^2 - 20 \ln x + \mu \max\{0, 5 - x\}$ (++)

Figur: Non-squared penalty function: For $\mu \ge 6$ the optimal solution for (++) is optimal (and feasible) for (+)

Sequential unconstrained penalty function algorithm

1. Choose $\mu_0 > 0$, a starting solution \mathbf{x}^0 , escalation factor $\beta > 1$, and iteration counter t := 0

2. Solve

minimize_{$$\mathbf{x}\in\Re^n$$} $F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i\in\mathcal{L}\cup\mathcal{E}} \alpha_i(\mathbf{x})$ (2)

with $\mu = \mu_t$, starting from $\mathbf{x}^t \Rightarrow$ optimal solution \mathbf{x}^{t+1} 3. If \mathbf{x}^{t+1} is (sufficiently close to) feasible in

$$\begin{array}{ll} \text{minimize }_{\mathbf{x} \in \Re^n} & f(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) \leq 0, \quad i \in \mathcal{L}, \\ & h_i(\mathbf{x}) = 0, \quad i \in \mathcal{E}. \end{array}$$

then stop.

Enlarge the penalty parameter: $\mu_{t+1} := \beta \mu_t$, let t := t + 1and repeat from 2.

Barrier function methods (Ch. 12.4)

Consider only inequality constraints:

$$\begin{array}{ll} \text{minimize }_{\mathbf{x}\in\Re^n} & f(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) \leq 0, \quad i \in \mathcal{L}. \end{array} \tag{3}$$

Drop the constraints and add terms in the objective that prevents from approaching the boundary of the feasible set

minimize_{$$\mathbf{x} \in \Re^n$$} $F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i \in \mathcal{L}} \alpha_i(\mathbf{x})$ (4)

where $\mu > 0$ and $\alpha_i(\mathbf{x}) \to +\infty$ as $g_i(\mathbf{x}) \to 0$ (as constraint *i* approaches being active)

Common barrier functions:

•
$$\alpha_i(\mathbf{x}) = -\ln[-g_i(\mathbf{x})]$$
 or $\alpha_i(\mathbf{x}) = \frac{-1}{g_i(\mathbf{x})}$

Logarithmic barrier functions

► Choose $\mu > 0$ and decrease it as the computations proceed ► **Example:** minimize $x^2 - 20 \ln x$ subject to $x \ge 5$ ⇒ minimize $_{x>5} x^2 - 20 \ln x - \mu \ln(x-5)$

Figur: Logarithmic barrier function: $\mu \in \{10, 5, 2.5, 1.25, 0.625, 0.3125\}$

Fractional barrier functions

► Choose $\mu > 0$ and decrease it as the computations proceed ► **Example:** minimize $x^2 - 20 \ln x$ subject to $x \ge 5$ ⇒ minimize $_{x>5} x^2 - 20 \ln x + \frac{\mu}{x-5}$

Figur: Fractional barrier function: $\mu \in \{10, 5, 2.5, 1.25, 0.625\}$

More about (fractional) barrier function methods

If µ > 0 and the true optimum lies on the boundary of the feasible set (i.e., g_i(x*) = 0 for some i ∈ L) then the optimum of a barrier function can never equal the true optimum

 \blacktriangleright Under mild assumptions, the sequence of unconstrained barrier optima converges (in the limit) to the true optimum as $\mu \to 0^+$

 $\begin{array}{ll} \text{minimize }_{\mathbf{x}\in\Re^n} & f(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) \leq 0, \quad i \in \mathcal{L} \end{array} \tag{3}$

- 1. Choose $\mu_0 > 0$, a feasible interior starting solution \mathbf{x}^0 (such that $g_i(\mathbf{x}^0) < 0$, $i \in \mathcal{L}$), reduction factor $\beta < 1$, and iteration counter t := 0
- 2. Solve

minimize_{$$\mathbf{x}\in\Re^n$$} $F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i\in\mathcal{L}} \alpha_i(\mathbf{x})$ (4)

with $\mu = \mu_t$, starting from $\mathbf{x}^t \Rightarrow$ optimal solution \mathbf{x}^{t+1}

3. If μ is sufficiently small, stop. Otherwise, decrease the barrier parameter: $\mu_{t+1} := \beta \mu_t$, let t := t + 1, and repeat from 2.

Quadratic programming (QP) (Ch. 12.2)

Example (quadratic convex objective, linear constraints):

minimize
$$f(\mathbf{x}) = -2x_1 - 6x_2 + x_1^2 - 2x_1x_2 + 2x_2^2$$

subject to $x_1 + x_2 \le 2$
 $- x_1 + 2x_2 \le 2$
 $x_1 - x_2 \ge 0$

General model:

minimize $\mathbf{c}^{\mathrm{T}}\mathbf{x} + \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{Q}\mathbf{x}$ subject to $\mathbf{A}\mathbf{x} - \mathbf{b} \leq \mathbf{0}, -\mathbf{I}\mathbf{x} \leq \mathbf{0}$

where
$$\mathbf{c} = \begin{pmatrix} -2 \\ -6 \end{pmatrix}$$
, $\mathbf{Q} = \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix}$, $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

QP: The Karush-Kuhn-Tucker conditions

minimize
$$\mathbf{c}^{\mathrm{T}}\mathbf{x} + \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{Q}\mathbf{x}$$
 subject to $\mathbf{A}\mathbf{x} - \mathbf{b} \leq \mathbf{0}, -\mathbf{I}\mathbf{x} \leq \mathbf{0}$

$$egin{array}{rcl} \mathbf{c} &+& \mathbf{Q}\mathbf{x} &+& \mathbf{A}^{\mathrm{T}}oldsymbol{\mu} &-& \mathbf{I}oldsymbol{\lambda} &=& 0\ \mathbf{A}\mathbf{x} &&\leq& \mathbf{b}\ -& \mathbf{I}\mathbf{x} &&\leq& \mathbf{0}\ \mu, oldsymbol{\lambda} &\geq& \mathbf{0}\ \mu^{\mathrm{T}}(\mathbf{A}\mathbf{x}-\mathbf{b}) = oldsymbol{\lambda}^{\mathrm{T}}\mathbf{x} &=& 0 \end{array}$$

 $\begin{array}{ll} \mbox{Slack variables }s\geq 0 \mbox{ of the constraints } Ax\leq b : & Ax+s=b \\ \Rightarrow \mbox{The Karush-Kuhn-Tucker constraints reduce to:} \end{array}$

$$\begin{array}{rclrcl} \mathbf{Q}\mathbf{x} & + & \mathbf{A}^{\mathrm{T}}\boldsymbol{\mu} & - & \mathbf{I}\boldsymbol{\lambda} & = & -\mathbf{c} \\ \mathbf{A}\mathbf{x} & & + & \mathbf{I}\mathbf{s} & = & \mathbf{b} \\ & & \mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}, \mathbf{s} & \geq & \mathbf{0} \\ & & & \mu_i s_i = \lambda_j x_j & = & \mathbf{0} \text{ for all } i, j \end{array}$$

QP: The Karush-Kuhn-Tucker conditions

- ► For convex optimization problems ⇒ Karush-Kuhn-Tucker conditions are sufficient for a global optimum
- \Rightarrow A solution (**x**, μ , λ , **s**) that fulfils the Karush-Kuhn-Tucker conditions is optimal for convex quadratic programs (QP)
 - Not all quadratic programs are convex, though!!!
 - ▶ The KKT-system is linear, with variables: $\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}, \mathbf{s} \ge \mathbf{0}$
 - Additional conditions: $\mu_i s_i = \lambda_j x_j = 0$ for all i, j
- ⇒ Linear programming: Simplex algorithm with *restricted basis*:
 - Either $\mu_i = 0$ or $s_i = 0$. Either $\lambda_j = 0$ or $x_j = 0$.
 - $\Rightarrow\,$ If, e.g., \textit{s}_{2} is in the basis (s $_{2}>$ 0), μ_{2} may not enter the basis
 - Introduce artificial variables where needed and solve a phase-1 problem

QP: The phase–1 problem—The example

- ► Example (quadratic convex objective, linear constraints): minimize f(x) = -2x₁ - 6x₂ + x₁² - 2x₁x₂ + 2x₂²
 - subject to $x_1 + x_2 \le 2$ - $x_1 + 2x_2 \le 2$ $x_1 - x_2 \ge 0$
- - Find a starting base by reformulating: $a_1, a_2, s_1, s_2 \Rightarrow$ $w - a_1 - a_2 = w + 2x_2 + 2\lambda_1 + \lambda_2 - \mu_1 - \mu_2 - 8 = 0$

The phase-1 problem—reformulated

Minimize w, subject to:

under the complementarity conditions: $\mu_1 s_1 = \mu_2 s_2 = \lambda_1 x_1 = \lambda_2 x_2 = 0$

Solution to the phase-1 problem on next page...

Solution to the phase-1 problem

basis	W	<i>x</i> ₁	<i>x</i> 2	μ_1	μ_2	λ_1	λ_2	<i>s</i> ₁	<i>s</i> 2	a ₁	a ₂	RHS	
w	-1	0	-2	-2	-1	1	1	0	0	0	0	-8	x ₂ in?
a ₁	0	2	-2	1	-1	-1	0	0	0	1	0	2	$\lambda_2 = 0$
a ₂	0	-2	4	1	2	0	-1	0	0	0	1	6	$\Rightarrow OK$
s_1	0	1	1	0	0	0	0	1	0	0	0	2	s ₂ out
<i>s</i> 2	0	-1	2	0	0	0	0	0	1	0	0	2	
W	-1	-1	0	-2	-1	1	1	0	1	0	0	-6	μ_1 in?
a ₁	0	1	0	1	-1	-1	0	0	1	1	0	4	s ₁ basic
a ₂	0	0	0	1	2	0	-1	0	-2	0	1	2	\Rightarrow no
s_1	0	3/2	0	0	0	0	0	1	-1/2	0	0	1	x1 in?
<i>x</i> 2	0	-1/2	1	0	0	0	0	0	1/2	0	0	1	OK, s_1 out
w	-1	0	0	-2	-1	1	1	2/3	2/3	0	0	-16/3	μ_1 in?
a1	0	0	0	1	-1	-1	0	-2/3	4/3	1	0	10/3	$s_1 = 0$
a ₂	0	0	0	1	2	0	-1	0	-2	0	1	2	$\Rightarrow OK$
x_1	0	1	0	0	0	0	0	2/3	-1/3	0	0	2/3	a ₂ out
<i>x</i> 2	0	0	1	0	0	0	0	1/3	1/3	0	0	4/3	
w	-1	0	0	0	3	1	-1	2/3	-10/3	0	2	-4/3	s ₂ in?
a ₁	0	0	0	0	-3	-1	1	-2/3	10/3	1	-1	4/3	$\mu_2 = 0$
μ_1	0	0	0	1	2	0	-1	0	-2	0	1	2	$\Rightarrow OK$
x_1	0	1	0	0	0	0	0	2/3	-1/3	0	0	2/3	a ₁ out
<i>x</i> 2	0	0	1	0	0	0	0	1/3	1/3	0	0	4/3	
w	-1	0	0	0	0	0	0	0	0	1	1	0	optimum
<i>s</i> ₂	0	0	0	0	-9/10	-3/10	3/10	-1/5	1	3/10	-3/10	2/5	
μ_1	0	0	0	1	1/5	-3/5	-2/5	-2/5	0	3/5	2/5	14/5	
x_1	0	1	0	0	-3/10	-1/10	1/10	3/5	0	1/10	-1/10	4/5	
x2	0	0	1	0	3/10	1/10	-1/10	2/5	0	-1/10	1/10	6/5	

Optimal solution to the phase-1 problem

The optimal solution to the phase-1 problem is given by:

$$\begin{bmatrix} x_1^* = 4/5, & x_2^* = 6/5\\ \mu_1^* = 14/5, & \mu_2^* = 0\\ \lambda_1^* = 0, & \lambda_2^* = 0\\ s_1^* = 0, & s_2^* = 2/5 \end{bmatrix}$$
 Note that:
$$\mu_1 s_1 = \mu_2 s_2 = \lambda_1 x_1 = \lambda_2 x_2 = 0$$

The original QP:

minimize
$$f(\mathbf{x}) = -2x_1 - 6x_2 + x_1^2 - 2x_1x_2 + 2x_2^2$$

subject to $x_1 + x_2 \le 2$
 $-x_1 + 2x_2 \le 2$
 $x_1 - x_2 \ge 0$

 $\Rightarrow f(\mathbf{x}^*) = -36/5$ What if f was not convex (i.e., **Q** not positive (semi)definite)?

Graphical illustration

