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Applied optimization

◮ Many practical optimization problems have several objectives

◮ Some goals cannot be reduced to a common scale of
cost/profit ⇒ trade-offs must be addressed

◮ Examples: financial investments (risk/return), engine design
(efficiency/NOx/soot), investment cost vs. future emissions
(Ass 3a), radio therapy (cure vs. undesired effects, Ass 3b)

⇒ Multiple objectives

◮ Decisions may have to be made before information is known

◮ Examples: investments (Ass 3a), hydro and wind power
production, maintenance planning (Ass 2), energy systems
(Ass 1), ...

◮ Represent uncertain data by (discrete) probability distributions

◮ Consider decisions to make after the information is revealed

⇒ Optimization under uncertainty (stochastic programming)
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Literature on multiobjective optimization and

optimization under uncertainty

◮ Multiple objectives
Copies from the book Optimization in Operations Research by
R.L. Rardin (1998) pp. 373–387, handed out

◮ Optimization under uncertainty
Sections 1.1–1.5 of the book Stochastic Programming by
P. Kall and S.W. Wallace (second edition, 1994).
Download from stoprog.org → SP Resources → Textbooks
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Optimization of multiple objectives

◮ Consider the minimization of f (x) = (x − 1)2 subject to
0 ≤ x ≤ 3

◮ Optimal solution: x∗ = 1
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Optimization of multiple objectives

◮ Consider then two objectives:
minimize [f1(x), f2(x)] subject to 0 ≤ x ≤ 3

f1(x) = (x − 1)2

f2(x) = 3(x − 2)2

◮ How can we define an
optimal solution?

◮ A solution is Pareto optimal if
no other feasible solution has a
better value in all objectives

⇒ All points x ∈ [1, 2] are Pareto optimal
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Pareto optimal solutions in the objective space

◮ minimize [f1(x), f2(x)] subject to 0 ≤ x ≤ 3
where f1(x) = (x − 1)2 and f2(x) = 3(x − 2)2

◮ A solution is Pareto optimal if no other feasible solution has
a better value in all objectives
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◮ Pareto optima ⇔ nondominated points ⇔ efficient frontier
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Efficient points

◮ Consider a bi-objective linear program:

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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◮ The solutions in the green cone are better w.r.t. both
objectives

◮ The point x = (2, 2) is an efficient solution
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Dominated points

◮

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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◮ The point x = (3, 0) is dominated by the solutions in the
green cone

◮ Feasible solutions exist that are better w.r.t. both objectives
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Dominated points

◮

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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◮ The point x = (1, 1) is dominated by the solutions in the
green cone

◮ Feasible solutions exist that are better w.r.t. both objectives
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The efficient frontier—the set of Pareto optimal

solutions

◮

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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◮ The set of efficient solutions is given by
{
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The Pareto optimal set in the objective space

◮

maximize f1(x) := 3x1 + x2

maximize f2(x) := −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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◮ The set of Pareto optimal objective values is given by
{
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Mapping from the decision space to the objective

space

maximize [3x1 + x2;−x1 + 2x2]

subject to x1 + x2 ≤ 4, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3
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Solutions methods for multiobjective optimization

◮ Construct the efficient frontier by treating one objective as a
constraint and optimizing for the other:

maximize 3x1 + x2

subject to −x1 + 2x2 ≥ ε

x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3

◮ Here, let ε ∈ [−1, 6]. Why?

◮ What if the number of objectives is > 2?

◮ How many programs do we have to solve for seven objectives
and ten values of εk for each objective fk?
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Solution methods: preemptive optimization

◮ Consider one objective at a time—the most important first

◮ Solve for the first objective

◮ Solve for the second objective over the solution set for the first

◮ Solve for the third objective over the solution set for the
second

◮ ...

◮ The solution is an efficient point

◮ Different orderings of the objectives yield different solutions

◮ Exercise: solve the previous example using preemptive
optimization on different orderings
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Solution methods: weighted sums of objectives

◮ Give each maximization (minimization) objective a positive
(negative) weight

◮ Solve a single objective maximization problem

⇒ Yields an efficient solution

◮ Well spread weights do not necessarily produce solutions that
are well spread on the efficient frontier (ex: { 1

10 , 1
2 , 1, 2, 10})

◮ If the objectives are not concave
(maximization) or the feasible set
is not convex, then not all points
on the efficient frontier may be
possible to detect using weighted
sums of objectives
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Solution methods: soft constraints

◮ Consider the multiobjective optimization problem to

maximize [f1(x), . . . , fK (x)] subject to x ∈ X

◮ Define a target value tk and a deficiency variable dk ≥ 0 for
each objective fk

◮ Construct a soft constraint for each objective:

maximize fk(x) ⇒ fk(x) + dk ≥ tk , k = 1, . . . ,K

◮ Minimize the sum of deficiencies:

minimize
∑

k∈K

dk

subject to fk(x) + dk ≥ tk , k = 1, . . . ,K

dk ≥ 0, k = 1, . . . ,K

x ∈ X

◮ Important: Find first a common scale for fk , k = 1, . . . ,K
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Deterministic optimization models

◮ In a deterministic optimization model, uncertain parameters
are represented by, e.g., (empirical) averages

◮ The weakness is that the prediction is considered as a truth

and desicions are made as if the future was completely known

◮ Optimization tends to augment errors in the data when
uncertain data is replaced by predictions — “Do something as

good as possible”

◮ We need a methodology for handling optimization under
uncertainty
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Scenario approaches vs. optimization under

uncertainty

◮ Common approach: Handle deficiency
of deterministic optimization models by
identifying scenarios representing
the uncertainty—solve one
deterministic model for each scenario

⇒ May yield some information about the
variations of the solution,

◮ But each decision proposal presumes perfect information

about the future

◮ Optimization under uncertainty (stochastic programming)

◮ Uncertain parameters represented by stochastic variables

◮ Discretization necessary for the solvability of the models ⇒
discrete (approximate) probability distributions
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A decision must be made prior all data being known

◮ Several time stages ⇒ a scenario tree
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each time step:

◮ Stochastic variables are realized between decision time points.

◮ Goal: optimize the expected value over the scenario tree of,
e.g., the revenue
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Deterministic optimization vs. optimization under

uncertainty

Deterministic optimization
◮ All parameters and conditions are assumed known for sure

Optimization under uncertainty
◮ Decisions are based on observations (previous outcomes) and

under uncertainty of future outcomes

◮ A decision must not depend on outcomes not yet revealed

◮ A node in the tree ⇐⇒ a vector of decision variables
◮ In a specific node, the remaining future uncertainty is

represented by the sub-tree rooted in that node

◮ Typically, only the decision associated to the root node is
implemented—next time stage a new model is solved—a so
called rolling horizon

◮ The magnitude of an optimization problem increases when
uncertainties are modeled explicitly
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The LEGO furniture factory revisited

Small block, purchase price: 100 Large block, purchase price: 200

Chair:





demand: 50 + ξ2

sales price: (5 + η2) · 100
prod. cost: 50



 Table:





demand: 100 + ξ1

sales price: (8 + η1) · 100
prod. cost: 100





The stochastic parameters η1, η2, ξ1, and ξ2 are assumed to have
discrete probability functions
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Discrete probability functions

◮ The values η1 ∈ {−1, 0, 0.5}, η2 ∈ {−0.5, 0.5, 1},
ξ1 ∈ {−20, 0, 20}, ξ2 ∈ {−10, 0, 5} are achieved with
probabilities

{

1
4 , 1

2 , 1
4

}

10−1

10−1

−20 −10 0 10 20

−20 −10 0 10 20

η1

η2

ξ1

ξ2

◮ Assumption here: Low/medium/high demand levels
correspond to low/medium/high price levels

⇒ The four stochastic parameters are dependent

⇒ Totally three scenarios
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Definition of variables

◮ The demand and the selling prices are not known when the
blocks are purchased

◮ The purchase budget is 80000

◮ Variables:
x1 = # of large blocks purchased
x2 = # of small blocks purchased
y1 = # tables produced
y2 = # chairs produced
v1 = # tables sold
v2 = # chairs sold

◮ The values of the purchase variables x1 and x2 must be
decided on before the demand and selling prices are known

◮ Production (y1 and y2) and sales (v1 and v2) are decided on
later
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Mathematical model

Minimize purchase cost plus production cost minus sales revenue

minimizex ,y ,v z := 100 · [2x1 + x2 + y1 − (8 + η1)v1 + 0.5y2 − (5 + η2)v2]

subject to 2x1 +x2 ≤800 (budget)

x1 −2y1 −y2 ≥0 (large blocks used≤ purchased)

x2 −2y1 −2y2 ≥0 (small blocks used≤ purchased)

y1−v1 ≥0 (tables sold≤ produced)

y2−v2 ≥0 (chairs sold≤ produced)

v1 ≤100+ξ1 (tables sold≤ demand)

v2 ≤50+ξ2 (chairs sold≤ demand)

x1, x2, y1, v1 y2, v2 ≥0 (integer)
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Deterministic (expected value) solution

◮ Assume that the stochastic parameters attain their respective
expected values:

◮ E (η1) = 1
4 · (−1) + 1

2 · 0 + 1
4 · 0.5 = −0.125

◮ E (η2) = 1
4 · (−0.5) + 1

2 · 0.5 + 1
4 · 1 = 0.375

◮ E (ξ1) = 1
4 · (−20) + 1

2 · 0 + 1
4 · 20 = 0

◮ E (ξ2) = 1
4 · (−10) + 1

2 · 0 + 1
4 · 5 = −1.25

◮ Replace the stochastic parameters in the mathematical model
by their expeced values.
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The expected value solution
◮

minimizex ,y ,z z := 100 · [2x1 + x2 + y1 − 7.875v1 + 0.5y2 − 5.375v2]
subject to 2x1 +x2 ≤ 800

x1 −2y1 −y2 ≥ 0
x2 −2y1 −2y2 ≥ 0

y1 − v1 ≥ 0
y2 − v2 ≥ 0

v1 ≤ 100
v2 ≤ 48.75

x1, x2, y1, v1, y2, v2 ≥ 0 (integer)

◮ Solution: x1 = 248.75, x2 = 297.5, y1 = v1 = 100,
y2 = v2 = 48.75, z := −13016 (minus the profit)

◮ Deterministic solution:
◮ Purchase ≈ 249 large and ≈ 298 small blocks
◮ Produce and sell ≈ 100 tables and ≈ 49 chairs
◮ Profit: 13016

OBS: Infeasible at the lowest demand scenario (80 tables, 40 chairs)!
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A hedging deterministic optimization model

◮ Choose η1 = −1, η2 = −0.5, ξ1 = −20, and ξ2 = −10

minimizex ,y ,z z := 100 · [2x1 + x2 + y1 − 7v1 + 0.5y2 − 4.5v2]
subject to 2x1 +x2 ≤ 800

x1 −2y1 −y2 ≥ 0
x2 −2y1 −2y2 ≥ 0

y1 − v1 ≥ 0
y2 − v2 ≥ 0

v1 ≤ 80
v2 ≤ 40

x1, x2, y1, v1, y2, v2 ≥ 0 (integer)

◮ Solution: x1 =152.1, x2 =181.8, y1 =v1 =61.22,
y2 =v2 =29.67, z =0

◮ Deterministic solution:
◮ Purchase ≈ 152 large and ≈ 182 small blocks
◮ Produce and sell ≈ 61 tables and ≈ 30 chairs
◮ Profit: 0
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A stochastic optimization model

Stage 1: The purchase decision takes the possible outcomes of demand
and selling prices into consideration, with their respective
probabilities, and the corresponding decisions on
production/sales to make later on

◮ Three different scenarios: low/medium/high level of prices and
demand: η1 = [−1,−0.5], ξ1 = [−20,−10], η2 = [0, 0.5],
ξ2 = [0, 0], η3 = [0.5, 1], ξ3 = [20, 5]

Stage 2: When the decisions on production/sales are to be made, the
levels of prices and demand will be revealed

◮ Also the decided purchase of raw material is known

⇒ Optimize with respect to the outcome of the stochastic
parameters and the decisions from stage 1 (recourse)
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The first stage decision

◮ Minimize the purchase cost minus the expected future profit

◮ Decide on how many blocks to purchase (x)

◮ Consider the possible future outcomes of the demand (ξ) and
price (η) levels and the decisions on the production
(y(x , ξ, η)) and sales (v(x , ξ, η))

minimizex z := 100 · [2x1 + x2 − Eξ,ηQ(x , ξ, η)] (convex in x)

subject to 2x1 + x2 ≤ 800 (purchase≤ budget)

x1, x2 ≥ 0 (integer)

◮ Eξ,ηQ(x , ξ, η) denotes the expected value of the future profit,
which is computed in stage 2
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The second stage decisions

◮ Maximize future profit (sales revenues minus production costs)

◮ Decide on production and sales for each outcome of the price
(η) and demand (ξ) and for each purchase decision (x)

Q(x , ξ, η) =

























maximizey ,v −y1 + (8 + η1)v1 − 0.5y2 + (5 + η2)v2

subject to 2y1 +y2 ≤ x1

2y1 +2y2 ≤ x2

v1 ≤ y1

v2 ≤ y2

v1 ≤ 100 + ξ1

v2 ≤ 50 + ξ2

y1, v1 y2, v2 ≥ 0 (integer)
























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Expected future profits—the second stage decisions

Eξ,ηQ(x , ξ, η) =
1

4
Q(x , ξ1, η1) +

1

2
Q(x , ξ2, η2) +

1

4
Q(x , ξ3, η3)

=
1

4

















max−y1
1 + 7v1

1 − 0.5y1
2 + 4.5v1

2

subject to 2y1
1 + y1

2 ≤ x1

2y1
1 + 2y1

2 ≤ x2

v1
1 ≤ min{y1

1 , 80}
v1
2 ≤ min{y1

2 , 40}
v1
1 , v1

2 , y1
1 , y1

2 ≥ 0

















+
1

2

















max−y2
1 + 8v2

1 − 0.5y2
2 + 5.5v2

2

subject to 2y2
1 + y2

2 ≤ x1

2y2
1 + 2y2

2 ≤ x2

v2
1 ≤ min{y2

1 , 100}
v2
2 ≤ min{y2

2 , 50}
v2
1 , v2

2 , y2
1 , y2

2 ≥ 0

















+
1

4

















max−y3
1 + 8.5v3

1 − 0.5y3
2 + 6v3

2

subject to 2y3
1 + y3

2 ≤ x1

2y3
1 + 2y3

2 ≤ x2

v3
1 ≤ min{y3

1 , 120}
v3
2 ≤ min{y3

2 , 55}
v3
1 , v3

2 , y3
1 , y3

2 ≥ 0
















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A deterministic equivalent model

minimize z := 2x1 + x2 + 1
4

(

y1
1 − 7v1

1 + 0.5y1
2 − 4.5v1

2

)

+ 1
2

(

y2
1 − 8v2

1 + 0.5y2
2 − 5.5v2

2

)

+ 1
4

(

y3
1 − 8.5v3

1 + 0.5y3
2 − 6v3

2

)

subject to 2x1 +x2 ≤800
−x1 +2y1

1 +y1
2 ≤0

−x2 +2y1
1 +2y1

2 ≤0
v1
1 ≤min{y1

1 , 80}
v1
2 ≤min{y1

2 , 40}
−x1 +2y2

1 +y2
2 ≤0

−x2 +2y2
1 +2y2

2 ≤0
v2
1 ≤min{y2

1 , 100}
v2
2 ≤min{y2

2 , 50}
−x1 +2y3

1 +y3
2 ≤0

−x2 +2y3
1 +2y3

2 ≤0
v3
1 ≤min{y3

1 , 120}
v3
2 ≤min{y3

2 , 55}
x1, x2, y1

1 , y1
2 , v1

1 , v1
2 , y2

1 , y2
2 , v2

1 , v2
2 , y3

1 , y3
2 v3

1 , v3
2 ≥0 (integer)

The magnitude increases considerably with # scenarios!
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Solution to the optimization model that takes the

uncertainty into consideration

◮ First stage solution: x = (200, 250)

⇒ Objective value (minus expected profit): z = −10687

◮ Second stage solution: y1 = v1 = (80, 40),
y2 = v2 = y3 = v3 = (75, 50)

◮ If scenario 1 occurs (low) the profit becomes:
−100 · (2 · 200+250+80− 7 · 80+0.5 · 40− 4.5 · 40) = −1000

◮ If scenario 2 occurs (medium) the profit becomes:
−100 · (2 · 200 + 250 + 75− 8 · 75 + 0.5 · 50− 5.5 · 50) = 12500

◮ If scenario 3 occurs (high) the profit becomes:
−100 · (2 · 200 + 250 + 75− 8.5 · 75 + 0.5 · 50− 6 · 50) = 18750

◮ Expected profit: −1000
4 + 12500

2 + 18750
4 = 10687
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What if we would solve the deterministic model

(expected value solution) for the first stage decision
(x) and adjust the second stage solution ((y , v)) to
the actual scenario observed in the second stage?

1. Solve the deterministic model ⇒ x1 = 248.75, x2 = 297.5

2. Compute the future profit Q(x , ξ, η) for each scenario

3. The expected value of the expected value (deterministic)
solution is: z = 100 · [2x1 + x2 − Eξ,ηQ(x , ξ, η)] (next page)

4. Second stage solutions (three different scenarios):
y1 = v1 = (80, 40) y2 = v2 = y3 = v3 = (100, 48.75)
⇒ The expected profit of the expected value solution: 9140

5. The value of the stochastic solution: 10687−9140=1547>0

The expected profit increases when taking the uncertainties
under consideration already in the formulation of the model

Lecture 14 Applied Optimization



Expected future profit for x = (248.75, 297.5)

Eξ,ηQ(x , ξ, η) =
1

4
Q(x , ξ1, η1) +

1

2
Q(x , ξ2, η2) +

1

4
Q(x , ξ3, η3)

=
1

4

















max−y1
1 + 7v1

1 − 0.5y1
2 + 4.5v1

2

subject to 2y1
1 + y1

2 ≤ 248.75
2y1

1 + 2y1
2 ≤ 297.5

v1
1 ≤ min{y1

1 , 80}
v1
2 ≤ min{y1

2 , 40}
v1
1 , v1

2 , y1
1 , y1

2 ≥ 0

















+
1

2

















max−y2
1 + 8v2

1 − 0.5y2
2 + 5.5v2

2

subject to 2y2
1 + y2

2 ≤ 248.75
2y2

1 + 2y2
2 ≤ 297.5

v2
1 ≤ min{y2

1 , 100}
v2
2 ≤ min{y2

2 , 50}
v2
1 , v2

2 , y2
1 , y2

2 ≥ 0

















+
1

4

















max−y3
1 + 8.5v3

1 − 0.5y3
2 + 6v3

2

subject to 2y3
1 + y3

2 ≤ 248.75
2y3

1 + 2y3
2 ≤ 297.5

v3
1 ≤ min{y3

1 , 120}
v3
2 ≤ min{y3

2 , 55}
v3
1 , v3

2 , y3
1 , y3

2 ≥ 0
















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