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A general linear program

minimize or maximize ¢x3 + ...+ ChX,

IV IEIA

subject to aj1x; + ...+ ainx, { } b, i=1,...,m

<0 .
)(j unrestricted in sign , J = ]_7 ey n

>0

> ¢j, ajj, and b; are constant parameters for i = 1,..., m and
j=1...,n
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The standard form and the simplex method for linear

programs

» Every linear program can be reformulated such that:

» all constraints are expressed as equalities with non-negative
right hand sides
» all variables are restricted to be non-negative

» Referred to as the standard form

» These requirements streamline the calculations of the simplex
method

» Software solvers can handle also inequality constraints and
unrestricted variables—the reformulations are automatically
taken care of
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The simplex method—reformulations

» The lego example:

2x1 +x < 6 2x1 +Xxo +51 = 6
2x1 2% < 8 | & | 2x1 +2x +s,= 8
xy,x2 > 0 X1,X2,81,52 > 0

» s; and s, are called slack variables—they " fill out” the
(positive) distances between the left and right hand sides

» Surplus variable s3 (another example):

x1 + x > 800 X1 + X0 — s3 =
=
X1, X2 Z 0 X1,X2,53 Z 0
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The simplex method—reformulations, cont.

» Non-negative right hand side:

|:X1—X2 §—23:|<:>|:—X1+X2 Z23:|<:>|:—X1 + X0 — 54 :23:|

X1, X2 ZO X1, X2 ZO X1,X2,54 ZO

» Sign-restricted (non-negative) variables:

x1+x0 <10 - x1+ x5 — x5 <10 - X1+ xt —x3 +s5 =10
X1 >0 Xl’X217X22 >0 X17X%7X22755 >0
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Basic feasible solutions

Consider m equations of n variables, where m < n

v

v

Set n — m variables to zero and solve (if possible) the
remaining (m x m) system of equations

v

If the solution is unique, it is called a basic solution

v

A basic solution corresponds to an intersection (feasible
(x > 0) or infeasible (x 2 0)) of m hyperplanes in R™

v

Each extreme point of the feasible set is an intersection of m
hyperplanes such that all variable values are > 0

v

Basic feasible solution < extreme point of the feasible set

ax1 + ...+ ainxp = b1 x1 >0
aziXy + ...+ axpxp = bo x>0

am1X1+ ...+ amnXn = bm X, >0

Lecture 2 Applied Optimization



Basic feasible solutions, example

» Constraints:

23 (1)
6 (2
85 (3)
0

X1
0.067x; + X2
3x1 + 8x
X1, X2

IV AN IATA

» Add slack variables:
X1 +s1 =23 (1)
0.067x7 “+Xo +5 =6 (2)
3x1 +8x» +s3 =385 (3)
X1,X2,51,52,53 >0
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Basic and non-basic variables and solutions

basic basic solution non-basic point  feasible?

variables variables (0, 0)

S51,52,53 23 6 85 X1, X2 A yes
s1,%,  —5% 43 281 53, X2 H no
51,52, X2 23 —4% 10% X1, 53 C no
S51,X1,S3 —67 90 —185 52, X2 | no
S1, X2, S3 23 6 37 S, X1 B yes
X1,52,53 23 4% 16 S1, X2 G yes
X2,52,53 - - - S1,X1 - -
X1, X2, S1 15 5 8 S, S3 D yes
X1, X2, 52 23 2 21—75 51,53 F yes
X1,X2,53 23 4115 —19% 51,52 E no

FEmr T 5 o “2‘5‘ X
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Basic feasible solutions correspond to solutions to the

system of equations that fulfil non-negativity

- X1 +s1 =23
1 0.067x1 +xo +5 =6
3x1 +8x +s3 =85
s; =23
AX1:X2:0:>[1 s :6:|
s3 =285
s: =23
BX1:S2:0:>[)Q h :6:|
8xp +s3 =185
X +s: =23
D: s3=5=0= { 0,067 4 tZs }
3x1 +8xp =85
X =23
F: s3=51=0= { 0.067x1  txs  ts —6 }
3x1 +8xo =85
=23
G Xp = 81 = 0= { 0.0672 +s) =6 }
3x +s3 =285
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Basic infeasible solutions correspond to solutions to the

system of equations with one or more variables < 0

- X1 +51 =23
. 0.067x1 +Xxo +5> =
3x1 +8x +s3 =85
X1 +s =23 ]
H: xo = S3 = 0= 0.067); ' +s, =6
3% =85
s: =23
C X1—S3—0:> X2 ' +s =6 }
8 =85
X1 +s1 =23
! 5o =x=0= | o067 =6
3x1 +s3 =85
0 =23
- 51—X1—0:> X2  +s =6
8% +s3 =85
X =23
E: s1=5=0= 0.067)(1 +x2 =6
3x1 +8xo +s3 =85
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Basic feasible solutions and the simplex method

» Express the m basic variables in terms of the n — m non-basic
variables

» Example: Start at x; = x, = 0 = s1, sp, s3 are basic

X1 +51 =23
1—15X1 +Xx2 +5 =6
3x1 +8x +s3 =285

» Express s1, sp, and s3 in terms of x; and x»:

51 = 23 —X1
So = 6 —%Xl —X2
S3 = 85 —3x1 —8x

» Express the objective in terms of the non-basic variables:
z=2x1 + 3xo & z—2x1 —3x =0
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Basic feasible solutions and the simplex method

» The first basic solution can be represented as

-z +2x3 +3x% =0 (0)
X1 +51 =23 (1)

1—15X1 + X2 + S =0 (2)

3x1 + 8xp +s3 =85 (3)

» Marginal values for increasing the non-basic variables x; and
xp from zero: 2 and 3, resp.

= Choose x, — let x» enter the basis DRAW GRAPH!!
» One basic variable (s, sp, or s3) must leave the basis. Which?
» The value of x» can increase until some basic variable reaches
the value O:
s> = 0 when
(2):55=6—x>0 = x <6 }:>

=6
53 = 85 — 8xp > <102 2

» s> will leave the basis
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Change basis through row operations

Eliminate s, from the basis, let x, enter the basis using row

vV v . v Y
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operations:
-z  42x1 +3x = 01 (0)
X1 +51 = 23 ( )
%Xl +x2 +57 = 6| (2)
3x1  +8x +s3 | = 85 ( )
—z +2x —3s = -18 1 (0) —3:(2)
X1 +s1 = 23 | (1)-0-(2)
ﬁxl +x2 +5 = 6| (2)
5 X1 —8sy +s3 | = 37 | (3)-8(2)

Corresponding basic solution: s; = 23, x, = 6, s3 = 37.

Nonbasic variables: x; = s, =0

The marginal value of x7 is % > 0. Let x; enter the basis

Which should leave? s1, x, or s37



Change basis ...

—z +3x —3s, = 18] (0)
X1 +s1 = 23| (1)
%%Xl “+X2 +5> = 6 (2)
15X1 —8sy +4s3 | = 37 (3)
» The value of x; can increase until some basic variable reaches
the value O:
1):5=23—x, >0 = x1 <23
EZ;:XQ_G—%MZO = x, < 90 };s 53:9"Ige"
(3):s3=37—3Lx; >0 = x <15 =
> x; enters the basis and s3 will leave the basis
» Perform row operations:
—z +2.84sy —0.73s3 | = —45 (o)—(3)'§ 2
s; +3.24s, —041ls3 | = 8| (1)-(3) =
X2 +1.22s5, —0.03s3 | = 5| (2)-(3) % .
X1 —3.24s5, 4041s3 | = 15| (3)8
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Change basis ...

-z +2.84s, —0.73s3 | = —45 (O)
s1 +3.24sy —0.41s3 | = 8 (1)

X2 +1.22s, —0.03s3 | = 5 (2)

X1 —3.24s, +0.41s3 | = 15 (3)

» Let s, enter the basis (marginal value > 0)

» The value of s, can increase until some basic variable = 0:

1):5=8-3245>0 =5, <247
Ez%:x;:5—1.225220 = 5 < 4.10 };» o1 :f)z‘”;‘;"
(3):ix =154+3245, >0 = s > —4.63 2= 4
> s, enters the basis and s; will leave the basis
» Perform row operations:
—z —0.87s; —0.37s3 | = —52[ (0)—(1)- 354
03Lls; +s, —0.12s3 | = 247 | (1)35;
xy —0.37s1 +0.12s3 | = 2| (2-(1) 32
X1 +s1 = 23 | (3)+(1)
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Optimal basic solution

—Z —0.8751 —0.3753 = =52
0.31s; +sp, —0.12s3 | = 247
X2 —0.3751 +0.12S3 == 2
X1 +51 = 23
» No marginal value is positive. No improvement can be made
» The optimal basis is given by s, = 2.47, x, = 2, and x3 = 23
» Non-basic variables: s; = s3 =0
» Optimal value: z =52

S e e L R s S s s B By s B B B Bt B B B SR R B
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Summary of the solution course

basis | =z x X2 st S s3 | RHS
-z 1 2 3 0 0 0 0
s1 0 1 0 1 0 0 23
S 0 0.067 1 0 1 0 6
S3 0 3 8 0 0 1 85
-z 1 1.80 0 0 -3 0 -18
s1 0 1 0 1 0 0 23
X 0 0.07 1 0 1 0 6
S3 0 247 O 0 -8 1 37
-z 1 0 0 0 2.84 -0.73 -45
s1 0 0 0 1 3.24 -0.41 8
X 0 0 1 0 1.22 -0.03 5
X1 0 1 0 0 -3.24 041 15
-z 1 0 0 -0.87 0 -0.37 -52
S 0 0 0 0.31 1 -0.12 | 2.47
X0 0 0 1 -0.37 0 0.12 2
X1 0 1 0 1 0 0 23
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Summary of the simplex method

» Optimality condition: The entering variable in a
maximization (minimization) problem should have the largest
positive (negative) marginal value (reduced cost).

The entering variable determines a direction in which the
objective value increases (decreases).

If all reduced costs are negative (positive), the current basis is
optimal.

» Feasibility condition: The /eaving variable is the one with
smallest nonnegative ratio.

Corresponds to the constraint that is “reached first”
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Simplex search for linear (minimization) programs (Ch. 4.6)

1. Initialization: Choose any feasible basis, construct the
corresponding basic solution x°, let t = 0

2. Step direction: Select a variable to enter the basis using the
optimality condition (negative marginal value). Stop if no
entering variable exists

3. Step length: Select a leaving variable using the feasibility
condition (smallest non-negative ratio)

4. New iterate: Compute the new basic solution x!*1 by
performing matrix operations.

5. Let t := t+ 1 and repeat from 2
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Solve the lego problem using the simplex method!

maximize z = 1600x; + 1000x;
subject to 2x1 + x < 6
2x7  + 2x0 < 8
x1, x2 > 0
HOMEWORK!!
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Degeneracy (Ch. 4.10)

» If the smallest nonnegative ratio is zero, the value of a basic
variable will become zero in the next iteration

» The solution is degenerate
» The objective value will not improve in this iteration
» Risk: cycling around (non-optimal) bases
» Reason: a redundant constraint “touches” the feasible set
» Example:
x1 + x < 6
X2 < 3
x1 4+ 2% < 9
x1, 2 =2 0
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Degeneracy

» Typical objective function progress of the simplex method

objective value

iteration number

» Computational rules to prevent from infinite cycling: careful
choices of leaving and entering variables

» In modern software: perturb the right hand side (b; + Ab;),
solve, reduce the perturbation and resolve from the current
basis. Repeat until Ab; = 0.

Lecture 2 Applied Optimization



Unbounded solutions (

» If all ratios are negative, the variable entering the basis may
increase infinitely

» The feasible set is unbounded

» In a real application this would probably be due to some
incorrect assumption

» Example:

minimize z= —x;3 —2xp
subject to X1 +x <2
-2x1 +x <1
x1, x2 >0

DRAW GRAPH!!
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Unbounded solutions (Ch. 4.4, 4.6)

>

A feasible basis is given by x; = 1, xo = 3, with corresponding
tableau:
Homework: Find this basis using the simplex method.

basis | —z x; x» s s | RHS
—z 1 0 0 5 -3 7
X1 0o 1 0 1 -1 1
X0 0o 0 1 2 -1 3

Entering variable is s,
Rwl:xi=14+5>0=s5>-1
Row 2: x0 =3+ >0= s> -3

No leaving variable can be found, since no constraint will
prevent sy from increasing infinitely

vV v.v Yy
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Starting solution—finding an initial basis

» Example:
minimize z= 2x;3 +3x
subject to 3x1 +2x =14
2X1 —4X2 > 2
DRAW GRAPH!! 4x; +3x <19
X1, X2 > 0

» Add slack and surplus variables

minimize z= 2x; +3x
subject to 3x1 +2x =14
2X1 —4X2 —S51 =
4x; +3x +s, =19

X1, X2, 51,52 >0

» How finding an initial basis? Only s, is obvious!
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Artificial variables

» Add artificial variables a; and a> to the first and second
constraints, respectively
» Solve an artificial problem: minimize a; + a»

minimize w = a;y +as
subject to 3x1 +2x +a1 =14
2X1 —4X2 —$51 +ar, = 2
4x;  +3x +5> =19

X1,X2,81,%,a1,a2 >0

» The “phase one” problem
» An initial basis is given by a; = 14, a, = 2, and s, = 19:

basis | —w x1 x» s s a; a» | RHS
—w 1 5 2 1 0 0 0 -16
a 0 3.2 0 0 1 o0 14

a, 0 2 4 -1 0 0 1 2

S 0 4 3 0 1 0 O 19
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Find an initial solution using artificial variables

> xj enters = ap leaves (then xa = s, then 53 = a1)

basis | —w x1 x» 51 S a  a RHS
—w 1 -5 2 1 0 0 0 -16
ai 0 3 2 0 0 1 0 14
a 0 2 -4 -1 0 0 1 2
S 0 4 3 0 1 0 0 19
—-w 1 0 -8 -15 0 0 -11
ai 0 0 8 1.5 0 1 11
X1 0 1 -2 -0.5 0 0 1
S 0 O 11 2 1 0 15
—w 1 0 0 -0.045 0.727 0 -0.091
ai 0 O 0 0.045 -0.727 1 0.091
X1 0 1 0 -0.136  0.182 0 3.727
X2 0 O 1 0.182 0.091 0 1.364
—w 1 0 0 0 0 0
s1 0 O 0 1 -16 2
X1 0 1 0 0 -2 4
X2 0 O 1 0 3 1

» A feasible basis is given by x; =4, xo =1, and s =2
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Infeasible linear programs (Ch. 4.9)

» If the solution to the “phase one” problem has optimal value
= 0, a feasible basis has been found

= Start optimizing the original objective function z from this
basis (homework)

» If the solution to the “phase one” problem has optimal value
w > 0, no feasible solutions exist

» What would this mean in a real application?

> Alternative: Big-M method: Add the artificial variables to the
original objective—with a large coefficient
Example:
minimize z = 2x1 + 3xo

= minimize z; = 2x1 + 3xo + Ma; + May
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Alternative optimal solutions (Ch. 4.6)

» Example:
maximize z = 2x1 +4x
subject to x1 +2xp <5
X1 +tx2 <4
DRAW GRAPH!! x1,xo >0

» The extreme points (0, 2) and (3,1) have the same optimal
value z =10

» All solutions that are positive linear (convex) combinations of
these are optimal:

(xl,xz):a-(o,g)+(1—a)-(3,1), 0<a<l
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