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A general linear program

minimize or maximize c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn

{

≤

=
≥

}

bi , i = 1, . . . , m

xj

{

≤ 0
unrestricted in sign
≥ 0

}

, j = 1, . . . , n

◮ cj , aij , and bi are constant parameters for i = 1, . . . ,m and
j = 1, . . . , n
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The standard form and the simplex method for linear

programs

◮ Every linear program can be reformulated such that:

◮ all constraints are expressed as equalities with non-negative
right hand sides

◮ all variables are restricted to be non-negative

◮ Referred to as the standard form

◮ These requirements streamline the calculations of the simplex

method

◮ Software solvers can handle also inequality constraints and
unrestricted variables—the reformulations are automatically
taken care of
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The simplex method—reformulations

◮ The lego example:





2x1 +x2 ≤ 6
2x1 +2x2 ≤ 8

x1, x2 ≥ 0



 ⇔





2x1 +x2 +s1 = 6
2x1 +2x2 +s2 = 8

x1, x2, s1, s2 ≥ 0





◮ s1 and s2 are called slack variables—they ”fill out” the
(positive) distances between the left and right hand sides

◮ Surplus variable s3 (another example):

[

x1 + x2 ≥ 800
x1, x2 ≥ 0

]

⇔

[

x1 + x2 − s3 = 800
x1, x2, s3 ≥ 0

]
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The simplex method—reformulations, cont.

◮ Non-negative right hand side:

[

x1 − x2 ≤ −23
x1, x2 ≥ 0

]

⇔

[

−x1 + x2 ≥ 23
x1, x2 ≥ 0

]

⇔

[

−x1 + x2 − s4 = 23
x1, x2, s4 ≥ 0

]

◮ Sign-restricted (non-negative) variables:

[

x1 + x2 ≤ 10
x1 ≥ 0

]

⇔

[

x1 + x1
2 − x2

2 ≤ 10
x1, x

1
2 , x2

2 ≥ 0

]

⇔

[

x1 + x1
2 − x2

2 + s5 = 10
x1, x

1
2 , x2

2 , s5 ≥ 0

]

Lecture 2 Applied Optimization



Basic feasible solutions

◮ Consider m equations of n variables, where m ≤ n

◮ Set n − m variables to zero and solve (if possible) the
remaining (m × m) system of equations

◮ If the solution is unique, it is called a basic solution

◮ A basic solution corresponds to an intersection (feasible
(x ≥ 0) or infeasible (x 6≥ 0)) of m hyperplanes in ℜm

◮ Each extreme point of the feasible set is an intersection of m

hyperplanes such that all variable values are ≥ 0

◮ Basic feasible solution ⇔ extreme point of the feasible set

a11x1 + . . . + a1nxn = b1 x1 ≥ 0
a21x1 + . . . + a2nxn = b2 x2 ≥ 0

· · · · · ·

am1x1 + . . . + amnxn = bm xn ≥ 0
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Basic feasible solutions, example

◮ Constraints:

x1 ≤ 23 (1)
0.067x1 + x2 ≤ 6 (2)

3x1 + 8x2 ≤ 85 (3)
x1, x2 ≥ 0

◮ Add slack variables:

x1 +s1 = 23 (1)
0.067x1 +x2 +s2 = 6 (2)

3x1 +8x2 +s3 = 85 (3)
x1, x2, s1, s2, s3 ≥ 0

x1

x2

1

1

5

5

10

10 15 20 25

n = 5

m = 3
(1)

(2)

(3)
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Basic and non-basic variables and solutions

basic basic solution non-basic point feasible?
variables variables (0, 0)

s1, s2, s3 23 6 85 x1, x2 A yes
s1, s2, x1 −5 1

3
4 1

9
28 1

3
s3, x2 H no

s1, s2, x2 23 −4 5
8

10 5
8

x1, s3 C no
s1, x1, s3 −67 90 −185 s2, x2 I no
s1, x2, s3 23 6 37 s2, x1 B yes
x1, s2, s3 23 4 7

15
16 s1, x2 G yes

x2, s2, s3 - - - s1, x1 - -
x1, x2, s1 15 5 8 s2, s3 D yes
x1, x2, s2 23 2 2 7

15
s1, s3 F yes

x1, x2, s3 23 4 7
15

−19 11
15

s1, s2 E no

x1

x2

1

1

5

5

10

10 15 20 25

A

B

C

D
E

F

G H
I

(1)

(2)

(3)
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Basic feasible solutions correspond to solutions to the

system of equations that fulfil non-negativity

x1

x2

1
1

5

5

10

10 15 20 25
A

B D

F
G

(1)

(2)

(3)





x1 +s1 = 23
0.067x1 +x2 +s2 = 6

3x1 +8x2 +s3 = 85





A: x1 = x2 = 0 ⇒
2

4

s1 = 23
s2 = 6

s3 = 85

3

5

B: x1 = s2 = 0 ⇒
2

4

s1 = 23
x2 = 6

8x2 +s3 = 85

3

5

D: s3 = s2 = 0 ⇒
2

4

x1 +s1 = 23
0.067x1 +x2 = 6

3x1 +8x2 = 85

3

5

F: s3 = s1 = 0 ⇒
2

4

x1 = 23
0.067x1 +x2 +s2 = 6

3x1 +8x2 = 85

3

5

G: x2 = s1 = 0 ⇒
2

4

x1 = 23
0.067x1 +s2 = 6

3x1 +s3 = 85

3

5

Lecture 2 Applied Optimization



Basic infeasible solutions correspond to solutions to the

system of equations with one or more variables < 0

x1

x2

1
1

5

5

10

10 15 20 25

C

E

H
I

(1)

(2)

(3)





x1 +s1 = 23
0.067x1 +x2 +s2 = 6

3x1 +8x2 +s3 = 85





H: x2 = s3 = 0 ⇒
2

4

x1 +s1 = 23
0.067x1 +s2 = 6

3x1 = 85

3

5

C: x1 = s3 = 0 ⇒
2

4

s1 = 23
x2 +s2 = 6

8x2 = 85

3

5

I: s2 = x2 = 0 ⇒
2

4

x1 +s1 = 23
0.067x1 = 6

3x1 +s3 = 85

3

5

-: s1 = x1 = 0 ⇒
2

4

0 = 23
x2 +s2 = 6

8x2 +s3 = 85

3

5

E: s1 = s2 = 0 ⇒
2

4

x1 = 23
0.067x1 +x2 = 6

3x1 +8x2 +s3 = 85

3

5
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Basic feasible solutions and the simplex method

◮ Express the m basic variables in terms of the n − m non-basic

variables

◮ Example: Start at x1 = x2 = 0 ⇒ s1, s2, s3 are basic





x1 +s1 = 23
1
15x1 +x2 +s2 = 6
3x1 +8x2 +s3 = 85





◮ Express s1, s2, and s3 in terms of x1 and x2:





s1 = 23 −x1

s2 = 6 − 1
15x1 −x2

s3 = 85 −3x1 −8x2





◮ Express the objective in terms of the non-basic variables:
z = 2x1 + 3x2 ⇔ z − 2x1 − 3x2 = 0
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Basic feasible solutions and the simplex method

◮ The first basic solution can be represented as
−z +2x1 +3x2 = 0 (0)

x1 +s1 = 23 (1)
1
15x1 + x2 + s2 = 6 (2)
3x1 + 8x2 + s3 = 85 (3)

◮ Marginal values for increasing the non-basic variables x1 and
x2 from zero: 2 and 3, resp.

⇒ Choose x2 — let x2 enter the basis Draw graph!!

◮ One basic variable (s1, s2, or s3) must leave the basis. Which?

◮ The value of x2 can increase until some basic variable reaches
the value 0:

(2) : s2 = 6 − x2 ≥ 0 ⇒ x2 ≤ 6
(3) : s3 = 85 − 8x2 ≥ 0 ⇒ x2 ≤ 105

8

}

⇒

s2 = 0 when
x2 = 6

(and s3 = 37)

◮ s2 will leave the basis
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Change basis through row operations

◮ Eliminate s2 from the basis, let x2 enter the basis using row
operations:
−z +2x1 +3x2 = 0 (0)

x1 +s1 = 23 (1)
1
15x1 +x2 +s2 = 6 (2)
3x1 +8x2 +s3 = 85 (3)

−z + 9
5x1 −3s2 = −18 (0) −3·(2)
x1 +s1 = 23 (1)−0·(2)

1
15x1 +x2 +s2 = 6 (2)
37
15x1 −8s2 +s3 = 37 (3)−8·(2)

◮ Corresponding basic solution: s1 = 23, x2 = 6, s3 = 37.

◮ Nonbasic variables: x1 = s2 = 0

◮ The marginal value of x1 is 9
5 > 0. Let x1 enter the basis

◮ Which should leave? s1, x2, or s3?
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Change basis ...

−z +9
5x1 −3s2 = −18 (0)
x1 +s1 = 23 (1)

1
15x1 +x2 +s2 = 6 (2)
37
15

x1 −8s2 +s3 = 37 (3)

◮ The value of x1 can increase until some basic variable reaches
the value 0:
(1) : s1 = 23 − x1 ≥ 0 ⇒ x1 ≤ 23
(2) : x2 = 6 − 1

15x1 ≥ 0 ⇒ x1 ≤ 90
(3) : s3 = 37 − 37

15x1 ≥ 0 ⇒ x1 ≤ 15







⇒
s3 = 0 when

x1 = 15

◮ x1 enters the basis and s3 will leave the basis

◮ Perform row operations:
−z +2.84s2 −0.73s3 = −45 (0)−(3)· 1537 ·

9
5

s1 +3.24s2 −0.41s3 = 8 (1)−(3) · 15
37

x2 +1.22s2 −0.03s3 = 5 (2)−(3) · 15
37 · 1

15
x1 −3.24s2 +0.41s3 = 15 (3)·1537
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Change basis ...

−z +2.84s2 −0.73s3 = −45 (0)
s1 +3.24s2 −0.41s3 = 8 (1)

x2 +1.22s2 −0.03s3 = 5 (2)
x1 −3.24s2 +0.41s3 = 15 (3)

◮ Let s2 enter the basis (marginal value > 0)

◮ The value of s2 can increase until some basic variable = 0:

(1) : s1 = 8 − 3.24s2 ≥ 0 ⇒ s2 ≤ 2.47
(2) : x2 = 5 − 1.22s2 ≥ 0 ⇒ s2 ≤ 4.10
(3) : x1 = 15 + 3.24s2 ≥ 0 ⇒ s2 ≥ −4.63







⇒
s1 = 0 when
s2 = 2.47

◮ s2 enters the basis and s1 will leave the basis

◮ Perform row operations:
−z −0.87s1 −0.37s3 = −52 (0)−(1) · 2.84

3.24
0.31s1 +s2 −0.12s3 = 2.47 (1)· 1

3.24
x2 −0.37s1 +0.12s3 = 2 (2)−(1) · 1.22

3.24
x1 +s1 = 23 (3)+(1)
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Optimal basic solution

−z −0.87s1 −0.37s3 = −52
0.31s1 +s2 −0.12s3 = 2.47

x2 −0.37s1 +0.12s3 = 2
x1 +s1 = 23

◮ No marginal value is positive. No improvement can be made

◮ The optimal basis is given by s2 = 2.47, x2 = 2, and x1 = 23

◮ Non-basic variables: s1 = s3 = 0

◮ Optimal value: z = 52

x

y

1

1

5

5 10 15 20 25
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Summary of the solution course

basis −z x1 x2 s1 s2 s3 RHS

−z 1 2 3 0 0 0 0
s1 0 1 0 1 0 0 23
s2 0 0.067 1 0 1 0 6
s3 0 3 8 0 0 1 85

−z 1 1.80 0 0 -3 0 -18
s1 0 1 0 1 0 0 23
x2 0 0.07 1 0 1 0 6
s3 0 2.47 0 0 -8 1 37

−z 1 0 0 0 2.84 -0.73 -45
s1 0 0 0 1 3.24 -0.41 8
x2 0 0 1 0 1.22 -0.03 5
x1 0 1 0 0 -3.24 0.41 15

−z 1 0 0 -0.87 0 -0.37 -52
s2 0 0 0 0.31 1 -0.12 2.47
x2 0 0 1 -0.37 0 0.12 2
x1 0 1 0 1 0 0 23
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Summary of the simplex method

◮ Optimality condition: The entering variable in a
maximization (minimization) problem should have the largest
positive (negative) marginal value (reduced cost).

The entering variable determines a direction in which the
objective value increases (decreases).

If all reduced costs are negative (positive), the current basis is
optimal.

◮ Feasibility condition: The leaving variable is the one with
smallest nonnegative ratio.

Corresponds to the constraint that is “reached first”
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Simplex search for linear (minimization) programs (Ch. 4.6)

1. Initialization: Choose any feasible basis, construct the
corresponding basic solution x0, let t = 0

2. Step direction: Select a variable to enter the basis using the
optimality condition (negative marginal value). Stop if no
entering variable exists

3. Step length: Select a leaving variable using the feasibility
condition (smallest non-negative ratio)

4. New iterate: Compute the new basic solution xt+1 by
performing matrix operations.

5. Let t := t + 1 and repeat from 2
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Solve the lego problem using the simplex method!

maximize z = 1600x1 + 1000x2

subject to 2x1 + x2 ≤ 6
2x1 + 2x2 ≤ 8

x1, x2 ≥ 0

Homework!!
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Degeneracy (Ch. 4.10)

◮ If the smallest nonnegative ratio is zero, the value of a basic
variable will become zero in the next iteration

◮ The solution is degenerate

◮ The objective value will not improve in this iteration

◮ Risk: cycling around (non-optimal) bases

◮ Reason: a redundant constraint “touches” the feasible set

◮ Example:

x1 + x2 ≤ 6
x2 ≤ 3

x1 + 2x2 ≤ 9
x1, x2 ≥ 0
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Degeneracy

◮ Typical objective function progress of the simplex method
objective value

iteration number

◮ Computational rules to prevent from infinite cycling: careful
choices of leaving and entering variables

◮ In modern software: perturb the right hand side (bi + ∆bi),
solve, reduce the perturbation and resolve from the current
basis. Repeat until ∆bi = 0.
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Unbounded solutions (Ch. 4.4, 4.6)

◮ If all ratios are negative, the variable entering the basis may
increase infinitely

◮ The feasible set is unbounded

◮ In a real application this would probably be due to some
incorrect assumption

◮ Example: minimize z = −x1 −2x2

subject to −x1 +x2 ≤ 2
−2x1 +x2 ≤ 1

x1, x2 ≥ 0

Draw graph!!
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Unbounded solutions (Ch. 4.4, 4.6)

◮ A feasible basis is given by x1 = 1, x2 = 3, with corresponding
tableau:
Homework: Find this basis using the simplex method.

basis −z x1 x2 s1 s2 RHS

−z 1 0 0 5 -3 7

x1 0 1 0 1 -1 1
x2 0 0 1 2 -1 3

◮ Entering variable is s2

◮ Row 1: x1 = 1 + s2 ≥ 0 ⇒ s2 ≥ −1

◮ Row 2: x2 = 3 + s2 ≥ 0 ⇒ s2 ≥ −3

◮ No leaving variable can be found, since no constraint will
prevent s2 from increasing infinitely
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Starting solution—finding an initial basis (Ch. 4.9)

◮ Example:

minimize z = 2x1 +3x2

subject to 3x1 +2x2 = 14
2x1 −4x2 ≥ 2

Draw graph!! 4x1 +3x2 ≤ 19
x1, x2 ≥ 0

◮ Add slack and surplus variables

minimize z = 2x1 +3x2

subject to 3x1 +2x2 = 14
2x1 −4x2 −s1 = 2
4x1 +3x2 +s2 = 19

x1, x2, s1, s2 ≥ 0

◮ How finding an initial basis? Only s2 is obvious!
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Artificial variables

◮ Add artificial variables a1 and a2 to the first and second
constraints, respectively

◮ Solve an artificial problem: minimize a1 + a2

minimize w = a1 +a2

subject to 3x1 +2x2 +a1 = 14
2x1 −4x2 −s1 +a2 = 2
4x1 +3x2 +s2 = 19

x1, x2, s1, s2, a1, a2 ≥ 0

◮ The “phase one” problem
◮ An initial basis is given by a1 = 14, a2 = 2, and s2 = 19:

basis −w x1 x2 s1 s2 a1 a2 RHS

−w 1 -5 2 1 0 0 0 -16

a1 0 3 2 0 0 1 0 14
a2 0 2 -4 -1 0 0 1 2
s2 0 4 3 0 1 0 0 19
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Find an initial solution using artificial variables

◮ x1 enters ⇒ a2 leaves (then x2 ⇒ s2, then s1 ⇒ a1)
basis −w x1 x2 s1 s2 a1 a2 RHS

−w 1 -5 2 1 0 0 0 -16

a1 0 3 2 0 0 1 0 14
a2 0 2 -4 -1 0 0 1 2
s2 0 4 3 0 1 0 0 19

−w 1 0 -8 -1.5 0 0 -11

a1 0 0 8 1.5 0 1 11
x1 0 1 -2 -0.5 0 0 1
s2 0 0 11 2 1 0 15

−w 1 0 0 -0.045 0.727 0 -0.091

a1 0 0 0 0.045 -0.727 1 0.091
x1 0 1 0 -0.136 0.182 0 3.727
x2 0 0 1 0.182 0.091 0 1.364

−w 1 0 0 0 0 0

s1 0 0 0 1 -16 2
x1 0 1 0 0 -2 4
x2 0 0 1 0 3 1

◮ A feasible basis is given by x1 = 4, x2 = 1, and s1 = 2
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Infeasible linear programs (Ch. 4.9)

◮ If the solution to the “phase one” problem has optimal value
= 0, a feasible basis has been found

⇒ Start optimizing the original objective function z from this
basis (homework)

◮ If the solution to the “phase one” problem has optimal value
w > 0, no feasible solutions exist

◮ What would this mean in a real application?

◮ Alternative: Big-M method: Add the artificial variables to the
original objective—with a large coefficient
Example:

minimize z = 2x1 + 3x2

⇒ minimize za = 2x1 + 3x2 + Ma1 + Ma2
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Alternative optimal solutions (Ch. 4.6)

◮ Example:

maximize z = 2x1 +4x2

subject to x1 +2x2 ≤ 5
x1 +x2 ≤ 4

Draw graph!! x1, x2 ≥ 0

◮ The extreme points (0, 5
2) and (3, 1) have the same optimal

value z = 10

◮ All solutions that are positive linear (convex) combinations of
these are optimal:

(x1, x2) = α · (0,
5

2
) + (1 − α) · (3, 1), 0 ≤ α ≤ 1
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