MVE165/MMG630, Applied Optimization Lecture 2 Basic feasible solutions; the simplex method; degeneracy; unbounded solutions; starting solutions

Ann-Brith Strömberg

2010-03-18

minimize or maximize $c_1x_1 + \ldots + c_nx_n$

subject to
$$a_{i1}x_1 + \ldots + a_{in}x_n \quad \left\{ \begin{array}{c} \leq \\ = \\ \geq \end{array} \right\} \quad b_i, \quad i=1,\ldots,m$$

$$x_j \quad \left\{ egin{array}{c} \leq 0 \\ unrestricted in sign \\ \geq 0 \end{array}
ight\}, \quad j=1,\ldots,n$$

▶ c_j, a_{ij}, and b_i are constant parameters for i = 1,..., m and j = 1,..., n

The standard form and the simplex method for linear programs

- Every linear program can be reformulated such that:
 - all constraints are expressed as equalities with non-negative right hand sides
 - all variables are restricted to be non-negative
- ► Referred to as the *standard form*
- These requirements streamline the calculations of the simplex method
- Software solvers can handle also inequality constraints and unrestricted variables—the reformulations are automatically taken care of

The lego example:

$$\begin{bmatrix} 2x_1 & +x_2 \leq 6\\ 2x_1 & +2x_2 \leq 8\\ x_1, x_2 \geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x_1 & +x_2 & +\mathbf{s_1} = 6\\ 2x_1 & +2x_2 & +\mathbf{s_2} = 8\\ x_1, x_2, \mathbf{s_1}, \mathbf{s_2} \geq 0 \end{bmatrix}$$

- s₁ and s₂ are called *slack variables*—they "fill out" the (positive) distances between the left and right hand sides
- ► *Surplus variable s*₃ (another example):

$$\left[\begin{array}{cccc} x_1 & + & x_2 & \geq & 800 \\ & x_1, x_2 & \geq & 0 \end{array}\right] \Leftrightarrow \left[\begin{array}{cccc} x_1 & + & x_2 & - & s_3 & = & 800 \\ & & x_1, x_2, s_3 & \geq & 0 \end{array}\right]$$

The simplex method—reformulations, cont.

Non-negative right hand side:

$$\begin{bmatrix} x_1 - x_2 &\leq -23 \\ x_1, x_2 &\geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 &\geq 23 \\ x_1, x_2 &\geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 - s_4 &= 23 \\ x_1, x_2, s_4 &\geq 0 \end{bmatrix}$$

Sign-restricted (non-negative) variables:

$$\begin{bmatrix} x_1 + x_2 \le 10 \\ x_1 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 \le 10 \\ x_1, x_2^1, x_2^2 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 + s_5 = 10 \\ x_1, x_2^1, x_2^2, s_5 \ge 0 \end{bmatrix}$$

Basic feasible solutions

- Consider *m* equations of *n* variables, where $m \le n$
- Set n − m variables to zero and solve (if possible) the remaining (m × m) system of equations
- If the solution is unique, it is called a basic solution
- A basic solution corresponds to an intersection (feasible (x ≥ 0) or infeasible (x ≥ 0)) of m hyperplanes in ℜ^m
- ► Each extreme point of the feasible set is an intersection of m hyperplanes such that all variable values are ≥ 0
- ▶ Basic feasible solution ⇔ extreme point of the feasible set

$$\begin{array}{ll} a_{11}x_1 + \ldots + a_{1n}x_n = b_1 & x_1 \ge 0 \\ a_{21}x_1 + \ldots + a_{2n}x_n = b_2 & x_2 \ge 0 \\ & \ddots & & \ddots \\ a_{m1}x_1 + \ldots + a_{mn}x_n = b_m & x_n > 0 \end{array}$$

Basic feasible solutions, example

► Constraints:

$$egin{array}{rcl} x_1&\leq&23&(1)\ 0.067x_1&+x_2&\leq&6&(2)\ 3x_1&+8x_2&\leq&85&(3)\ x_1,x_2&\geq&0 \end{array}$$

Add slack variables:

Basic and non-basic variables and solutions

basic	ba	asic solu	tion	non-basic	point	feasible?
variables				variables (0,0)		
<i>s</i> ₁ , <i>s</i> ₂ , <i>s</i> ₃	23	6	85	x_1, x_2	А	yes
s_1, s_2, x_1	$-5\frac{1}{3}$	$4\frac{1}{9}$	$28\frac{1}{3}$	<i>s</i> ₃ , <i>x</i> ₂	Н	no
<i>s</i> ₁ , <i>s</i> ₂ , <i>x</i> ₂	23	$-4\frac{5}{8}$	$10\frac{5}{8}$	<i>x</i> ₁ , <i>s</i> ₃	С	no
s_1, x_1, s_3	-67	90	-185	<i>s</i> ₂ , <i>x</i> ₂	I.	no
<i>s</i> ₁ , <i>x</i> ₂ , <i>s</i> ₃	23	6	37	s_2, x_1	В	yes
x_1, s_2, s_3	23	$4\frac{7}{15}$	16	<i>s</i> ₁ , <i>x</i> ₂	G	yes
x_2, s_2, s_3	-	-	-	s_1, x_1	-	-
x_1, x_2, s_1	15	5	8	<i>s</i> ₂ , <i>s</i> ₃	D	yes
x_1, x_2, s_2	23	2	$2\frac{7}{15}$	<i>s</i> ₁ , <i>s</i> ₃	F	yes
x_1, x_2, s_3	23	$4\frac{7}{15}$	$-19\frac{11}{15}$	<i>s</i> ₁ , <i>s</i> ₂	E	no
	×2 10 5 8 1 1 4	(3)	10	D E G 15 20	.) <u>(2)</u>	

Lecture 2 Applied Optimization

Basic **feasible** solutions correspond to solutions to the system of equations that **fulfil non-negativity**

Basic **infeasible** solutions correspond to solutions to the system of equations with one or more variables < 0

Basic feasible solutions and the simplex method

- Express the *m* basic variables in terms of the *n m* non-basic variables
- Example: Start at $x_1 = x_2 = 0 \Rightarrow s_1$, s_2 , s_3 are basic

$$\begin{bmatrix} x_1 & +s_1 & = 23\\ \frac{1}{15}x_1 & +x_2 & +s_2 & = 6\\ 3x_1 & +8x_2 & +s_3 & = 85 \end{bmatrix}$$

• Express s_1 , s_2 , and s_3 in terms of x_1 and x_2 :

► Express the objective in terms of the *non-basic* variables: $z = 2x_1 + 3x_2 \quad \Leftrightarrow \quad z - 2x_1 - 3x_2 = 0$

Basic feasible solutions and the simplex method

	The	first	basic	solution	can	be	represented	as
--	-----	-------	-------	----------	-----	----	-------------	----

-z	$+2x_{1}$	$+3x_{2}$				= 0	(0)
	x_1		+ <i>s</i> 1			= 23	(1)
	$\frac{1}{15}x_1$	$+ x_2$		+ <i>s</i> ₂		= 6	(2)
	$3x_1$	$+8x_{2}$			+ <i>s</i> ₃	= 85	(3)

- Marginal values for increasing the non-basic variables x₁ and x₂ from zero: 2 and 3, resp.
- $\Rightarrow Choose x_2 let x_2 enter the basis DRAW GRAPH!!$
 - One basic variable $(s_1, s_2, \text{ or } s_3)$ must leave the basis. Which?
 - The value of x₂ can increase until some basic variable reaches the value 0:

$$\begin{array}{l} (2): s_2 = 6 - x_2 \ge 0 & \Rightarrow x_2 \le 6 \\ (3): s_3 = 85 - 8x_2 \ge 0 & \Rightarrow x_2 \le 10\frac{5}{8} \end{array} \right\} \Rightarrow \begin{array}{l} s_2 = 0 \text{ when} \\ x_2 = 6 \\ (\text{and } s_3 = 37) \end{array}$$

• s_2 will leave the basis

Change basis through row operations

Eliminate s₂ from the basis, let x₂ enter the basis using row operations:

-z	$+2x_{1}$	$+3x_{2}$					0	(0)
	<i>x</i> ₁		$+s_1$			=	23	(1)
	$\frac{1}{15}x_1$	$+x_{2}$		$+s_{2}$		=	6	(2)
	$3x_1$	$+8x_{2}$			$+s_3$	=	85	(3)
-z	$+\frac{9}{5}x_1$			-3 <i>s</i> ₂		=	-18	$(0) - 3 \cdot (2)$
- <i>z</i>	$+\frac{9}{5}x_1 x_1 x_1$		+ <i>s</i> 1	-3 <i>s</i> ₂			-18 23	$(0) -3 \cdot (2)$ (1)-0 \cdot (2)
- <i>z</i>	$+\frac{9}{5}x_1$ x_1 $\frac{1}{15}x_1$	+ <i>x</i> ₂	+ <i>s</i> 1	$-3s_2 + s_2$			-18 23 6	$(0) -3 \cdot (2)$ (1)-0 \cdot (2) (2)

• Corresponding basic solution: $s_1 = 23$, $x_2 = 6$, $s_3 = 37$.

- Nonbasic variables: $x_1 = s_2 = 0$
- The marginal value of x_1 is $\frac{9}{5} > 0$. Let x_1 enter the basis
- Which should leave? s_1 , x_2 , or s_3 ?

Change basis ...

-z	$+\frac{9}{5}x_1$			-3 <i>s</i> ₂		=	-18	(0)
	x ₁		$+s_1$			=	23	(1)
	$\frac{1}{15}x_1$	$+x_{2}$		$+s_{2}$		=	6	(2)
	$\frac{37}{15}x_1$			-8 <i>s</i> ₂	$+s_3$	=	37	(3)

The value of x₁ can increase until some basic variable reaches the value 0:

$$\begin{array}{l} (1): s_1 = 23 - x_1 \ge 0 & \Rightarrow x_1 \le 23 \\ (2): x_2 = 6 - \frac{1}{15} x_1 \ge 0 & \Rightarrow x_1 \le 90 \\ (3): s_3 = 37 - \frac{37}{15} x_1 \ge 0 & \Rightarrow x_1 \le 15 \end{array} \right\} \Rightarrow \begin{array}{l} s_3 = 0 \text{ when} \\ x_1 = 15 \end{array}$$

- x_1 enters the basis and s_3 will leave the basis
- Perform row operations:

-z				+2.84 <i>s</i> ₂	-0.73 <i>s</i> ₃		-45	$(0) - (3) \cdot \frac{15}{37} \cdot \frac{9}{5}$
			s_1	+3.24 <i>s</i> ₂	-0.41 <i>s</i> ₃	=	8	$(1)-(3)\cdot\frac{15}{37}$
		<i>x</i> ₂		$+1.22s_{2}$	-0.03 <i>s</i> ₃	=	5	$(2)-(3)\cdot\frac{15}{37}\cdot\frac{1}{15}$
	x_1			-3.24 <i>s</i> ₂	+0.41 <i>s</i> ₃	=	15	$(3) \cdot \frac{15}{37}$

Change basis ...

- <i>z</i>			+2.84 <i>s</i> ₂	-0.73 <i>s</i> ₃	=	-45	(0)
		s_1	$+3.24s_{2}$	-0.41 <i>s</i> ₃	=	8	(1)
	<i>x</i> ₂		$+1.22s_{2}$	-0.03 <i>s</i> ₃	=	5	(2)
<i>x</i> ₁			-3.24 <i>s</i> ₂	$+0.41s_{3}$	=	15	(3)

• Let s_2 enter the basis (marginal value > 0)

• The value of s_2 can increase until some basic variable = 0:

$$\begin{array}{l} (1): s_1 = 8 - 3.24 s_2 \ge 0 & \Rightarrow s_2 \le 2.47 \\ (2): x_2 = 5 - 1.22 s_2 \ge 0 & \Rightarrow s_2 \le 4.10 \\ (3): x_1 = 15 + 3.24 s_2 \ge 0 & \Rightarrow s_2 \ge -4.63 \end{array} \right\} \Rightarrow \begin{array}{l} s_1 = 0 \text{ when} \\ s_2 = 2.47 \end{array}$$

- s_2 enters the basis and s_1 will leave the basis
- Perform row operations:

-z			-0.87 <i>s</i> ₁		-0.37 <i>s</i> 3	=	-52	$(0)-(1)\cdot\frac{2.84}{3.24}$
			0.31 <i>s</i> 1	$+s_{2}$	-0.12 <i>s</i> ₃	=	2.47	$(1) \cdot \frac{1}{324}$
		<i>x</i> ₂	-0.37 <i>s</i> 1		$+0.12s_{3}$	=	2	$(2) - (1) \cdot \frac{1.22}{3.24}$
2	x_1		$+s_1$			=	23	(3)+(1)

Optimal basic solution

- <i>z</i>		$-0.87s_1$		-0.37 <i>s</i> 3	=	-52
		0.31 <i>s</i> ₁	$+s_2$	-0.12 <i>s</i> ₃	=	2.47
	<i>x</i> ₂	$-0.37s_1$		$+0.12s_{3}$	=	2
<i>x</i> ₁		$+s_1$			=	23

No marginal value is positive. No improvement can be made

- The optimal basis is given by $s_2 = 2.47$, $x_2 = 2$, and $x_1 = 23$
- Non-basic variables: $s_1 = s_3 = 0$

Summary of the solution course

basis	-z	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
- <i>z</i>	1	2	3	0	0	0	0
s_1	0	1	0	1	0	0	23
s ₂	0	0.067	1	0	1	0	6
s 3	0	3	8	0	0	1	85
- <i>z</i>	1	1.80	0	0	-3	0	-18
s_1	0	1	0	1	0	0	23
<i>x</i> ₂	0	0.07	1	0	1	0	6
<i>s</i> ₃	0	2.47	0	0	-8	1	37
- <i>z</i>	1	0	0	0	2.84	-0.73	-45
s_1	0	0	0	1	3.24	-0.41	8
<i>x</i> ₂	0	0	1	0	1.22	-0.03	5
<i>x</i> ₁	0	1	0	0	-3.24	0.41	15
- <i>z</i>	1	0	0	-0.87	0	-0.37	-52
<i>s</i> ₂	0	0	0	0.31	1	-0.12	2.47
<i>x</i> ₂	0	0	1	-0.37	0	0.12	2
<i>x</i> ₁	0	1	0	1	0	0	23

Summary of the simplex method

- Optimality condition: The *entering* variable in a maximization (minimization) problem should have the largest positive (negative) marginal value (reduced cost).
 - The entering variable determines a direction in which the objective value increases (decreases).
 - If all reduced costs are negative (positive), the current basis is optimal.
- Feasibility condition: The *leaving* variable is the one with smallest nonnegative ratio.

Corresponds to the constraint that is "reached first"

Simplex search for linear (minimization) programs (Ch. 4.6)

- 1. Initialization: Choose any feasible basis, construct the corresponding basic solution \mathbf{x}^0 , let t = 0
- 2. **Step direction:** Select a variable to enter the basis using the optimality condition (negative marginal value). Stop if no entering variable exists
- 3. **Step length:** Select a leaving variable using the feasibility condition (smallest non-negative ratio)
- New iterate: Compute the new basic solution x^{t+1} by performing matrix operations.
- 5. Let t := t + 1 and repeat from 2

Solve the lego problem using the simplex method!

Homework!!

- If the smallest nonnegative ratio is zero, the value of a basic variable will become zero in the next iteration
- ▶ The solution is *degenerate*
- The objective value will not improve in this iteration
- Risk: cycling around (non-optimal) bases
- ▶ Reason: a *redundant* constraint "touches" the feasible set
- Example:

- Computational rules to prevent from infinite cycling: careful choices of leaving and entering variables
- In modern software: perturb the right hand side (b_i + Δb_i), solve, reduce the perturbation and resolve from the current basis. Repeat until Δb_i = 0.

Unbounded solutions (Ch. 4.4, 4.6)

- If all ratios are negative, the variable entering the basis may increase infinitely
- The feasible set is unbounded
- In a real application this would probably be due to some incorrect assumption

Example: minimize
$$z = -x_1 - 2x_2$$

subject to $-x_1 + x_2 \le 2$
 $-2x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

Draw graph!!

Unbounded solutions (Ch. 4.4, 4.6)

► A feasible basis is given by x₁ = 1, x₂ = 3, with corresponding tableau:

Homework: Find this basis using the simplex method.

basis	-z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	RHS
- <i>z</i>	1	0	0	5	-3	7
<i>x</i> ₁	0	1	0	1	-1	1
<i>x</i> ₂	0	0	1	2	-1	3

- Entering variable is s₂
- Row 1: $x_1 = 1 + s_2 \ge 0 \Rightarrow s_2 \ge -1$
- $\blacktriangleright \text{ Row } 2: x_2 = 3 + s_2 \ge 0 \Rightarrow s_2 \ge -3$
- No leaving variable can be found, since no constraint will prevent s₂ from increasing infinitely

Starting solution—finding an initial basis (Ch. 4.9)

Example:

	minimize	<i>z</i> =	$2x_1$	$+3x_{2}$	
	subject to		$3x_1$	$+2x_{2}$	= 14
			$2x_1$	$-4x_{2}$	≥ 2
Draw graph!!			$4x_1$	$+3x_{2}$	\leq 19
				x_1, x_2	\geq 0

Add slack and surplus variables

minimize	z =	$2x_1$	$+3x_{2}$		
subject to		$3x_1$	$+2x_{2}$		= 14
		$2x_1$	$-4x_{2}$	$-s_1$	= 2
		$4x_{1}$	$+3x_{2}$	$+s_{2}$	= 19
				x_1, x_2, s_1, s_2	\geq 0

▶ How finding an initial basis? Only *s*₂ is obvious!

Artificial variables

- Add artificial variables a₁ and a₂ to the first and second constraints, respectively
- Solve an artificial problem: minimize $a_1 + a_2$

- ▶ The "phase one" problem
- An initial basis is given by $a_1 = 14$, $a_2 = 2$, and $s_2 = 19$:

basis	-w	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	a_1	a_2	RHS
-w	1	-5	2	1	0	0	0	-16
a ₁	0	3	2	0	0	1	0	14
a ₂	0	2	-4	-1	0	0	1	2
<i>s</i> ₂	0	4	3	0	1	0	0	19

Find an initial solution using artificial variables

x_1 enters $\Rightarrow a_2$ leaves (then $x_2 \Rightarrow s_2$, then $s_1 \Rightarrow a_1$)									
basis	-w	x_1	<i>x</i> ₂	s 1	<i>s</i> ₂	a_1	a 2	RHS	
-w	1	-5	2	1	0	0	0	-16	
a_1	0	3	2	0	0	1	0	14	
a_2	0	2	-4	-1	0	0	1	2	
s ₂	0	4	3	0	1	0	0	19	
-w	1	0	-8	-1.5	0	0		-11	
a_1	0	0	8	1.5	0	1		11	
<i>x</i> ₁	0	1	-2	-0.5	0	0		1	
s ₂	0	0	11	2	1	0		15	
-w	1	0	0	-0.045	0.727	0		-0.091	
<i>a</i> ₁ 0 0		0	0	0.045	-0.727	1		0.091	
<i>x</i> ₁	0	1	0	-0.136	0.182	0		3.727	
<i>x</i> ₂	0	0	1	0.182	0.091	0		1.364	
-w	1	0	0	0	0			0	
S 1	0	0	0	1	-16			2	
x_1	0	1	0	0	-2			4	
<i>x</i> ₂	0	0	1	0	3			1	
A fea	sible t	basis	is gi	ven by x	$x_1 = 4, 2$	$x_2 =$	1, a	nd $s_1 = 2$	

Infeasible linear programs (Ch. 4.9)

- If the solution to the "phase one" problem has optimal value
 = 0, a feasible basis has been found
- ⇒ Start optimizing the original objective function z from this basis (homework)
 - If the solution to the "phase one" problem has optimal value w > 0, no feasible solutions exist
 - What would this mean in a real application?
 - Alternative: Big-M method: Add the artificial variables to the original objective—with a large coefficient Example:

minimize
$$z = 2x_1 + 3x_2$$

 \Rightarrow minimize $z_a = 2x_1 + 3x_2 + Ma_1 + Ma_2$

Example:

	maximize	z =	$2x_1$	$+4x_{2}$	
	subject to		<i>x</i> ₁	$+2x_{2}$	\leq 5
			x_1	$+x_{2}$	\leq 4
Draw graph!!				x_1, x_2	\geq 0

- ► The extreme points (0, ⁵/₂) and (3, 1) have the same optimal value z = 10
- All solutions that are positive linear (convex) combinations of these are optimal:

$$(x_1, x_2) = \alpha \cdot (0, \frac{5}{2}) + (1 - \alpha) \cdot (3, 1), \quad 0 \le \alpha \le 1$$