MVE165/MMG630, Applied Optimization Lecture 5 Minimum cost flow models and algorithms

Ann-Brith Strömberg

2010-03-25

Maximum flow models

- Consider a district heating network with pipelines that transports energy from a number of sources to a number of destinations
- ▶ The network has several branches and intersections
- Pipe segment (i,j) has a maximum capacity of K_{ij} units of flow per time unit
- A pipe can be one- or bidirectional
- ▶ What is the maximum total amount of flow per time unit through this network?
- Another application of maximum flow models is evacuation of buildings

Linear programming formulation of maximum flow problem

▶ Graph: G = (V, A, K) (nodes, directed arcs, arc capacities)

[Primal]
$$\max_{s.t.} v,$$

$$-\sum_{j:(s,j)\in A} x_{sj} + v = 0,$$

$$\sum_{j:(j,t)\in A} x_{jt} - v = 0,$$

$$\sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj} = 0, \quad k \in V \setminus \{s,t\}$$

$$x_{ij} \leq K_{ij}, \quad (i,j) \in A$$

$$x_{ij} \geq 0, \quad (i,j) \in A$$

[Dual]
$$\min \sum_{(i,j)\in A} K_{ij}\gamma_{ij},$$

s.t. $-\pi_i + \pi_j + \gamma_{ij} \geq 0, \quad (i,j) \in A$
 $\pi_s - \pi_t \geq 1,$
 $\gamma_{ij} \geq 0, \quad (i,j) \in A$

Minimum cut

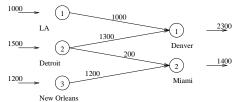
- ▶ A *cut* is a set of arcs which, when deleted, interrupt all flow in the network between the source *s* and the sink *t*
- ► The *cut capacity* equals the sum of capacities on all the arcs through the cut
- ► Finding the minimum cut is equal to solve the dual of the max flow problem
- ► Theorem: value of maximum flow = value of minimum cut (strong duality)

Transportation models: An example

- MG Auto has three plants, LA, Detroit, New Orleans, and two distribution centers, Denver and Miami
- ▶ Capacities of the plants: 1000, 1500, and 1200 cars
- ▶ Demands at distributions centers: 2300 and 1400 cars
- ► Transportation cost per car between plants and centers:

	Denver	Miami
LA	\$80	\$215
Detroit	\$100	\$108
New Orleans	\$102	\$68

▶ Find the cheapest shipping schedule to satisfy the demand

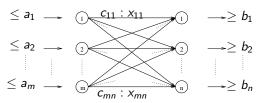


Linear programming formulation of MG Auto

▶ Variables: x_{ij} = number of cars sent from plant i to distribution center j

Definition of the transportation model

- ▶ m sources and n destinations \Leftrightarrow **nodes**
- $ightharpoonup a_i = amount of supply at source (node) i$
- $ightharpoonup b_j = ext{amount of demand at destination (node) } j$
- ▶ **Arc** (i,j) \Leftrightarrow connection from source i to destination j
- $ightharpoonup c_{ij} = \text{cost per unit of flow on arc } (i,j)$
- **Variables:** $x_{ij} =$ amount of goods shipped on arc (i,j)
- ▶ **Objective:** find $x_{ij} \ge 0$ such that the total cost is minimized while satisfying all supply and demand restrictions



Linear programming transportation model

$$\begin{array}{lll} \min z := & \displaystyle \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \\ \text{s.t.} & \displaystyle \sum_{j=1}^n x_{ij} & \leq & a_i, & i=1,\dots,m \\ & \displaystyle \sum_{i=1}^m x_{ij} & \geq & b_j, & j=1,\dots,n \\ & \displaystyle x_{ij} & \geq & 0, & i=1,\dots,m, & j=1,\dots,n \end{array} \label{eq:state_state}$$

- ▶ Feasible solutions exist *if and only if* $\sum_i a_i \ge \sum_j b_j$
- ► The constraint matrix has special properties (totally unimodular) ⇒ integer solutions in extreme points of the feasible polyhedron
- ► This property holds for all problems that can be formulated as linear flows in networks

A balanced transportation model

 \triangleright What if total amount of demand \neq total amount of supply? $(\sum_i a_i > \sum_i b_j \text{ (feasible) or } \sum_i a_i < \sum_i b_j \text{ (infeasible)})$

$$\min z := \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{m} x_{ij} \leq a_{i}, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} x_{ij} \geq b_{j}, \quad j = 1, ..., n$$

$$x_{ij} \geq 0, \quad i = 1, ..., m, j = 1, ..., n$$

- \Rightarrow **Balance** the model by dummy source (m+1) or destination (n+1)
 - ▶ Suppose $\sum_i a_i > \sum_i b_i \Rightarrow \text{Let } b_{n+1} := \sum_{i=1}^m a_i \sum_{i=1}^n b_i$
- ⇒ **Balanced** transportation model—equality constraints

min
$$z := \sum_{i=1}^{m} \sum_{j=1}^{n+1} c_{ij} x_{ij}$$

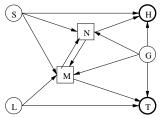
s.t. $\sum_{j=1}^{m} x_{ij} = a_i, \quad i = 1, \dots, m$
 $\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n+1$
 $x_{ij} \geq 0, \quad i=1, \dots, m, j=1, \dots, n+1$

General network flow problems

- ▶ A network consist of a set *N* of *nodes* linked by a set *A* of *arcs*
- ightharpoonup A distance/cost c_{ij} is associated with each arc
- ► Each node *i* in the network has a net demand *d_i*
- ▶ Each arc has an (unknown) amount of flow x_{ij} that is restricted by a maximum capacity $u_{ij} \in [0, \infty]$ and a minimum capacity $\ell_{ij} \in [0, u_{ij}]$
- ▶ The flow through each node must be balanced
- A network flow problem can be formulated as a linear program
- ▶ All extreme points of the feasible set are *integral* due to the *unimodularity* property of the constraint matrix (see Ch. 8.6.3)

- Two paper mills: Holmsund and Tuna
- ► Three saw mills: Silje, Graninge and Lunden
- ► Two storage terminals: Norrstig and Mellansel

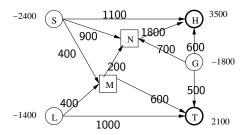
Supply (m ³)	Demand (m^3)
2400	
1800	
1400	
	3500
	2100
	1800



► Transportation opportunities:

From	То	Price/m ³	Capacity (m ³)
Silje	Norrstig	20	900
Silje	Mellansel	26	1000
Silje	Holmsund	45	1100
Graninge	Norrstig	8	700
Graninge	Mellansel	14	900
Graninge	Holmsund	37	600
Graninge	Tuna	22	600
Lunden	Mellansel	32	600
Lunden	Tuna	23	1000
Norrstig	Holmsund	11	1800
Norrstig	Mellansel	9	1800
Mellansel	Norrstig	9	1800
Mellansel	Tuna	9	1800

- Objective: Minimize transportation costs replacements
 Satisfy demand
- Do not exceed the supply
- Do not exceed the transportation capacities
- An optimal solution



```
min z :=
              20x_{SN} + 26x_{SM} + 45x_{SH} + 8x_{GN} + 14x_{GM}
              +37x_{GH} + 22x_{GT} + 32x_{IM} + 23x_{IT} + 11x_{NH}
              +9x_{NM} + 9x_{MN} + 9x_{MT}
                                                                                (Silje)
subject to
                                     -x_{SN} - x_{SM} - x_{SH}
                                                                     -2400
                                                                     -1800
                                                                                (Graninge)
                            -x_{GN} - x_{GM} - x_{GH} - x_{GT}
                                             -x_{IM} - x_{IT}
                                                                     -1400
                                                                                (Lunden)
                       x_{SN} + x_{GN} + x_{MN} - x_{NM} - x_{NH}
                                                                                (Norrstig)
                                                                                (Mellansel)
              x_{SM} + x_{IM} + x_{GM} + x_{NM} - x_{MN} - x_{MT}
                                                                       3500
                                                                                (Holmsund)
                                       x_{SH} + x_{GH} + x_{NH}
                                       x_{GT} + x_{LT} + x_{MT}
                                                                       2100
                                                                                (Tuna)
                                                               II VIVIVIVIVIVIVIVIVIVIVIV
                                                                        900
                                                 1000
                                                                       1100
                                                                       700
                                                                       900
                                                                      600
                                                                      600
                                                                        600
                                                                       1000
                                                                       1800
                                                                       1800
                                                                       1800
                                                                       1800
```

▶ The columns \mathbf{A}_j of the equality constraint matrix $(\mathbf{A}\mathbf{x} = \mathbf{b})$ have one 1-element, one -1-element; the remaining elements are 0

Minimum cost flow in a general network: LP formulation

- ▶ G = (N, A) is a network with nodes N and arcs A, |N| = n
- \triangleright x_{ij} is the amount of flow on the arc from node i to node j,
- ▶ ℓ_{ij} and u_{ij} are lower and upper limits for the flow on arc (i,j),
- $ightharpoonup c_{ij}$ is the cost per unit of flow on arc (i,j), and
- \triangleright d_i is the demand in node i

min
$$\sum_{\substack{(i,j)\in A\\ i:(i,k)\in A}} \sum_{x_{ik}} \sum_{\substack{(i,j)\in A\\ j:(k,j)\in A}} x_{kj} = d_k, \quad k \in \mathbb{N},$$

$$\ell_{ij} \leq x_{ij} \leq u_{ij}, \quad (i,j) \in A.$$

Linear programming dual:

$$\max \sum_{k \in N} d_k y_k + \sum_{(i,j) \in A} (\ell_{ij} \alpha_{ij} - u_{ij} \beta_{ij}),$$
s.t.
$$y_j - y_i + \alpha_{ij} - \beta_{ij} = c_{ij}, \quad (i,j) \in A,$$

$$\alpha_{ij}, \beta_{ij} \geq 0, \quad (i,j) \in A.$$

The simplex method for minimum cost flow in a general network

- A solution is optimal if
 - the primal and dual solutions are feasible and
 - the complementary conditions are fulfilled
- ▶ Reduced cost: $\overline{c}_{ij} = c_{ij} + y_i y_j$
- ▶ Complementary conditions, $(i, j) \in A$

 - $\beta_{ij}(u_{ij}-x_{ij})=0$
- ▶ Assume that $\ell_{ij} < u_{ij}$.
- ▶ A feasible solution x_{ij} , $(i,j) \in A$, is optimal if the following hold
 - $x_{ij} = u_{ij} \Rightarrow \alpha_{ij} = 0 \Rightarrow \text{Reduced cost: } \overline{c}_{ij} = -\beta_{ij} \leq 0$
 - $x_{ij} = \ell_{ij} \Rightarrow \beta_{ij} = 0 \Rightarrow \text{Reduced cost: } \overline{c}_{ij} = \alpha_{ij} \geq 0$
 - $\ell_{ij} < x_{ij} < u_{ij} \Rightarrow \alpha_{ij} = \beta_{ij} = 0 \Rightarrow \text{Reduced cost: } \overline{c}_{ij} = 0$

The Simplex algorithm for general minimum cost flows

- ▶ The arc (i,j) correspond to the variable x_{ij} , $(i,j) \in A$
- ▶ A basic solution is characterized by the following;
 - ▶ If $\ell_{ij} < x_{ij} < u_{ij} \Rightarrow$ the arc (i, j) is in the *basis* $\Leftrightarrow x_{ij}$ is a basic variable
 - ▶ If $x_{ij} = \ell_{ij}$ or $x_{ij} = u_{ij} \Rightarrow$ the arc (i,j) may be in the basis $\Leftrightarrow x_{ij}$ may be a basic variable
 - ▶ There are exactly n-1 basic arcs which form a spanning tree in G (one primal equation is a linear combination of the rest and can thus be removed)

The Simplex algorithm for minimum cost flows (Ch. 8.7)

- 1. Find a feasible solution (a spanning tree of basic arcs)
- 2. Compute reduced costs $\overline{c}_{ij} = c_{ij} + y_i y_j$ for all non-basic arcs
- 3. Check termination criteria: If for every arc (i,j)
 - either: $\overline{c}_{ij} = 0$ and $\ell_{ij} \leq x_{ij} \leq u_{ij}$,
 - or: $\overline{c}_{ij} < 0$ and $x_{ij} = u_{ij}$,
 - or: $\overline{c}_{ij} > 0$ and $x_{ij} = \ell_{ij}$

hold, then STOP. x_{ij} , $(i,j) \in A$ is an optimal solution

- 4. Entering variable (arc): $(p,q) \in \arg\max_{(i,j) \in I} |\overline{c}_{ij}|$ I = the set of non-basic arcs not fulfilling the conditions in 3.
- 5. Leaving variable (arc): Send flow along the cycle defined by the current basis (spanning tree) and the arc (p,q). The arc (i,j) whose flow x_{ij} first reaches u_{ij} or ℓ_{ij} leaves the basis.
- 6. Go to step 2

The assignment model (Ch. 13.5)

- ► A special case of the network flow model (and of the transportation model)
- ▶ Given *n* persons and *n* jobs
- ▶ Given further the cost c_{ij} of assigning person i to job j
- ▶ Binary variables $x_{ij} = 1$ if person i does job j and $x_{ij} = 0$ otherwise
- Find the cheapest assignment of persons to jobs such that all jobs are done

$$\begin{array}{llll} \min & \sum_{ij} c_{ij} x_{ij} \\ \text{s.t.} & \sum_{j} x_{ij} & = & 1 & \forall i \\ & \sum_{i} x_{ij} & = & 1 & \forall j \\ & x_{ij} & \geq & 0 & \forall i, j \end{array}$$

► The optimal solution is binary (due to the totally unimodular constraint matrix)

An assignment example

- ▶ 3 children: John, Karin and Tina
- ▶ 3 tasks: mow, paint and wash.
- Given further a "cost" (time, uncomfort,...) for each combination of child/task
- ► How should the parents distribute the tasks to minimize the cost?

	Mow	Paint	Wash
John	15	10	9
Karin	9	15	10
Tina	10	12	8

► Choose exactly one element in each row and one in each column

