Chalmers University of Technology MVE165

University of Gothenburg MMG630
Mathematical Sciences Applied Optimization
Optimization Assignment information
Emil Gustafsson and Ann-Brith Stromberg April 23, 2012

Assignment 3c: Traveling Salesman Problem

Given below is a description of the traveling salesman problem (TSP). The
model together with its problem background are described in more detail in
the notes of Lecture 12b.

Material for the assignment can be found at the course homepage:
http://www.math.chalmers.se/Math/Grundutb/CTH/mvel65/1112/
Files for creating, plotting and solving TSP instances are given.

Questions 1-4 are mandatory. In addition, students aiming at grade 4, 5 or
VG must answer at least one of questions 5 or 6.

To pass the assignment you should (in groups of two persons) (i) write a
detailed report that gives satisfactory answers and explanations to the ques-
tions. You shall also estimate the number of hours spent on this assignment
and note this in your report.

The file containing your report shall be called Namel-Name2-Ass3c.pdf,
where “Namek”, k = 1,2, is your respective family name. Do not forget to
write the authors’ names also inside the report.

The report should be
submitted in PingPong at latest Monday 7th of May 2012.

Your shall also (ii) present your assignment orally at a seminar on
10th, 11th or 15th of May 2012.

The seminars are scheduled via a doodle link, which will be published on the
course home page. Presence is mandatory at at least one of these seminars.



Problem background

The Traveling Salesman Problem (TSP) is one of the most studied problems
in optimization and computational mathematics. The name of the problem
comes from the case when a salesman has a number of cities to visit, and he
wishes to find the shortest route such that he only has to travel to each city
once. It was first formulated as a mathematical problem in the 1930s and can
be stated as:

Given a list of cities and their pairwise distances, find the shortest possible tour
that visits each city exactly once.

Figure 1: The shortest tour that visits all nodes exactly once.

The TSP is one of many NP-hard problems, meaning that there does not exist
any algorithm that can solve the problem to optimality in polynomial time. In
essence, a NP-hard problem is a computationally difficult problem that we can
not expect to solve exactly when considering larger problem instances. For a
more general description of NP problems, see [1].

Because of the computational complexity of the TSP, we have to consider solu-
tion methods that can provide us with acceptable solutions within a reasonable
amount of time. Not only do we want to have a candidate for what we believe
to be a short tour, but also a measure of how much we can improve our solution
by searching further. To obtain a candidate solution and a quality measure of
the solution, we will consider two optimization methods;

e Heuristics: Algorithms for finding feasible and acceptable solutions that
will give upper bounds on the objective value.

e Relazation algorithms: Relaxing the problem can give easier subproblems
which produce lower bounds on the objective value.

The largest TSP instance solved to optimality is a problem with 85,900 cities,
which was solved by the Concorde code in 2006. Another interesting example
is the shortest tour visiting all the cities in Sweden (24 978 cities) which was
found in 2004 and has a length of approximately 72,500 km. [2]



The mathematical model

We consider a set N = {1, ..., N} of cities (nodes), where the distance between
city @ and j is ¢;; for 4,7 € N. In this assignment, we will consider the
symmetric TSP, in which the distance between two cities does not depend
on the direction, i.e., ¢;; = ¢j;. The TSP model in the symmetric case can be
simplified by only considering undirected links between the cities, meaning that
we do not distinguish between the links (4,7) and (j,7). We let L C N x N
denote the undirected links in the graph, and note that the links (¢, ) and (7, 4)
are only represented by one non-directed link in the set £. When implementing
the model, we let £ = {(4,7) : 4,7 € N,i < j}. We introduce binary variables
x;j, where x;; = 1 if one travels directly from city 4 to city j, and z;; = 0
otherwise. The objective is to find a tour of minimum distance such that
each city is visited exactly once. This can be formulated as an integer linear
program:

minimize Z CijTij, (1a)
(ig)eL
subject to Z xij + Z Tj; =2, 1eN, (1b)
JEN:(3,5)EL JEN:(Ji)EL

Y 2 <ISI-1, VSCWN, (L)
(i,5)€L:{i,51CS
Tij € {0,1}, 1,7 eN. (ld)

The objective (1a) is to minimize the distance of the tour. Constraints (1b) says
that we must enter and leave each city exactly once and constraint (1c) says
that no subtours are allowed. The subtour constraints can also be formulated

as
Z T + Z x5 >2, VS C N. (le)

(i,J)EL: 1€8,jEN\S (Ji)EL: i€S, JEN\S

A special case is the metric TSP problem in which all distances fulfill the
triangle inequality, i.e., ¢;, + cx; > ¢;; for all ¢, j,k € N. All the problems in
this assignment will be metric TSP problems.

Algorithms

The most direct solution technique would be to try all possible tours and then
choose the one with lowest cost. A brute force technique like this would require
running time which lies within a polynomial factor of O(n!), and hence would
be computationally intractable even for problems with only 20 cities. There
is an exact algorithm called the Held-Karp algorithm which utilizes dynamic
programming that can solve the problem in time O(n?2").

Constructive heuristics

There are many specially designed constructive heuristics for the TSP which,
by finding a feasible tour, can give an upper bound on the optimal value.
Some heuristics are for example based on simple rules deciding which city the



route should visit next (ex nearest neighbour heuristic), while other are based
on solving simple subproblems to find feasible tours (ex Christofides and the
MST-heuristic). See |3] and [4]

Another kind of heuristics are called probabilistic heuristics, meaning that they
involve some stochastic rules for choosing the tour. Some of the most known
probabilistic heuristics are genetic algorithms, simmulated annealing and ant
colony optimization.

Improvement heuristics

An improvement heuristic is an algorithm that starts with a tour (given for
example by some constructive heuristic) and improves it. The most used im-
provement heuristics for the TSP are k-opt heuristics and crossing elimination.

131, 14]

Relaxation algorithms

By relaxing some constraints and then solving the reduced problem to opti-
mality, lower bounds on the distance of the optimal route can be obtained.
The trick when relaxing a problem is to do it in such a way that the relaxed
problem becomes easy to solve. In this assignment, we will consider the 1-tree
Lagrangian relazation algorithm.

A tree defined on a set of nodes is a graph that connects all nodes without any
cycles. We say that a 1-tree defined on N nodes is a connected graph with N
arcs and exactly one cycle. From this definition, we can see that the symmetric
TSP can be formulated as finding the cheapest 1-tree such that all nodes has
degree two, i.e., the TSP can be formulated as

minimize Z CijTij, (2a)
(i.7)€L
subject to Z xij = 2, ie N, (2b)
JEN:(i,5)eL
x is a l-tree (2¢)

If we relax the assignment constraints (2b) for all nodes except for node s, the
resulting problem is the problem to find a minimum spanning tree on the set
N\ {s} of nodes, and then connect node s to the tree by the two cheapest arcs.
This can be done very efficiently by first finding the MST by for example Prims
or Kruskals algorithm, and then connecting node s to the tree. The problem
to find the least expensive 1-tree in a graph is called a 1-MST problem.

However, the 1-tree relaxation to the TSP gives fairly poor lower bounds.
Therefore, we will instead Lagrangian relax the assignment constraints and
consider the relaxed problem

q(7) = minimize Z CijTij + Z (s (2 - Z a:ij> , (3a)
YeL

(i.5)eL ieN PEN: (i)
subject to x is a 1-tree with root node s (3b)

where ¢(7) is called the dual objective function. For any 7r, the dual objective
function can easily be evaluated by finding a MST on a set N\ {s}, and then



connecting node s to the tree by the two cheapest arcs. We note that the
objective function (3a) can be written as

Z Eijxij + 2 Z T,

(i,5)eL ieN

where ¢;; = ¢;; — m; — m; are called the reduced costs. We see that the La-
grangian multipliers 7; makes a node attractive (unattractive) if the value of
the multiplier is high (low) in the 1-MST problem (3).

The dual objective value always gives a lower bound on objective function, and
the goal of a relaxation algorithm is to find as good lower bound as possible,
i.e., we are interested in finding ¢* = max, g~ ¢(7). To achieve this, we
will utilize a subgradient algorithm. In each iteration k of the algorithm, new
Lagrangian multipliers 7w%*1 are computed from ¥, such that we get closer to
the optimal solution 7*. The updating is done by considering the subgradient

hF=2— Z xfj,

i€EN: (i,5)EN

for i € N, where xfj is the solution obtained from solving the 1-MST problem
q(7*). We then update the Lagrangian multipliers according to

aftt = b 4 oFhk, (4)
where the steplength o is defined by

¢ — q(m")

k k
o =
: HthZ ,

0< ek <2

Since ¢* is unknown, the best primal feasible solutions obtained so far is used
instead. One common choice is to start the sequence ¢* with £€¥ = 2 and reduce
€ by a factor of two whenever ¢(7*) has failed to increase in a specified number
of iterations.

To have a measure on how good the lower bound is in each iteration, one
should construct a heuristic that finds a feasible tour based on the solution
found in each evaluation of the dual objective function. A short version of the
algorithm can thus be formulated as

Step 0: Let £ = 0 and choose 7°.

Step 1: Given 7*, solve (3).

Step 2: Construct a primal feasible solution. Use the solution obtained from
solving the dual problem and make adjustments such that it becomes feasible.
Step 3: If the duality gap is small, then stop.

Step 4: Compute "1 from (4), let k = k + 1, and go to Step 1.



Exercises to perform and questions to answer

2.

. Use the TSP model implemented in TSP.mod and solve the problems

TSP_small and TSP_medium with CPLEX. What is the length of the
shortest tour in each instance? Now relax (one at a time) constraints
(1b), (1c) and (1d), and resolve the problems. (When you relax con-
straints (1b), use (le) as subtour constraints). Which of the relaxations
gives the best lower bound? Plot the solutions with and without relax-
ations by using the plot_TSP.m-file in MATLAB. Describe what you see.
Give some comments on the computation times.

(a) Construct a deterministic constructive heuristic. You are more than
welcome to use your own heuristic or other heuristics not mentioned
in this assignment. Explain how it works.

(b) Use the heuristic on all the test problems. What is the length of
the tours found by the heuristic? Can you (by visually inspecting
the solutions) determine if the solutions can be improved?

(¢) What can you say about the optimal objective values for the test
problems? What kind of guarantee can your heuristic give? Why?
Try to construct a TSP problem where your heuristic would perform
as bad as possible. The problem does not have to be metric.

(d) Analyze how the computation time of your heuristic depends on
the number of cities. Use the file create_TSP.m to create TSP
problems.

(a) Construct an improvement heuristic that uses a feasible tour and
then improves it. Explain how it works.

(b) Try the improvement heuristic by taking the tours found by the con-
structive heuristic for all test problems. How much can the heuristic
improve the initial tours?

(a) Implement the 1-tree Lagrangian relaxation algorithm. Note that
you need to construct a primal feasibility heuristic that is used in
each iteration.

(b) Useit on all the test problems. What can you say about the optimal
objective values?

(c) Show in a graph how the gap between the lower and upper bound
improves in each iteration. Because some of the problems are large,
you should set a limit on how many iterations you allow.

Implement a probabilistic heuristic for the TSP and explain how it works.
Try it on all test problems and analyze its performance. Can the heuristic
give any guarantees on the solutions found?

Describe either how a Branch and Bound algorithm or a Cutting Plane
algorithm could be used for solving the traveling salesman problem. Ref-
erences can be found at [3], [4] and [5]. You do not need to implement
it.



References

[1]

2]

3]

[5]

The P versus NP page.
hitp:/ /www.win.tue.nl/~ gwoegi/P-versus-NP.htm

Concorde TSP Solver.
http:/ /www.tsp.gatech.edu/concorde.html

Optimization. Jan Lundgren, Mikael Ronnquist, Peter Virnbrand
Studentlitteratur AB, Lund, 2010.

The Traveling Salesman Problem: An overview of exact and approximate
algorithms. Gilbert Laporte, Furopean Journal of Operational Research 59
(1992) 231-247, North-Holland.

Solving a TSP - Cutting Plane
http:/ /www.tsp.gatech.edu/methods /dfj/indez. html



