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Applied optimization — multiple objectives

◮ Many practical optimization problems have several objectives
which may be in conflict

◮ Some goals cannot be reduced to a common scale of
cost/profit ⇒ trade-offs must be addressed

◮ Examples
◮ Financial investments — risk vs. return

◮ Engine design — efficiency vs. NOx vs. soot

◮ Wind power production — investment vs. operation (Ass 3b)

◮ Industrial investments — cost vs. future emissions (Ass 3d)

◮ Literature on multiple objectives’ optimization
Copies from the book Optimization in Operations Research by
R.L. Rardin (1998) pp. 373–387, handed out
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Optimization of multiple objectives

◮ Consider the minimization of f (x) = (x − 1)2 subject to
0 ≤ x ≤ 3

◮ Optimal solution: x∗ = 1
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Optimization of multiple objectives

◮ Consider then two objectives:

minimize [f1(x), f2(x)]

subject to 0 ≤ x ≤ 3

where

f1(x) = (x − 1)2, f2(x) = 3(x − 2)2

◮ How can we define an optimal
solution?

◮ A solution is Pareto optimal if no
other feasible solution has a better
value in all objectives

⇒ All points x ∈ [1, 2] are Pareto
optimal
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Pareto optimal solutions in the objective space

◮ minimize [f1(x), f2(x)] subject to 0 ≤ x ≤ 3
where f1(x) = (x − 1)2 and f2(x) = 3(x − 2)2

◮ A solution is Pareto optimal if no other feasible solution has
a better value in all objectives
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◮ Pareto optima ⇔ nondominated points ⇔ efficient frontier
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Efficient points

◮ Consider a bi-objective linear program:

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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◮ The solutions in the green cone are better than the solution
(2, 2) w.r.t. both objectives

◮ The point x = (2, 2) is an efficient, or non-dominated, solution
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Dominated points

◮

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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◮ The point x = (3, 0) is dominated by the solutions in the
green cone

◮ Feasible solutions exist that are better w.r.t. both objectives
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Dominated points

◮

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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◮ The point x = (1, 1) is dominated by the solutions in the
green cone

◮ Feasible solutions exist that are better w.r.t. both objectives
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The efficient frontier—the set of Pareto optimal

solutions

◮

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

◮ The set of efficient solutions is given by
{

x ∈ ℜ2
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}

Note that this is not a convex set!
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The Pareto optimal set in the objective space

◮

maximize f1(x) := 3x1 + x2

maximize f2(x) := −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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◮ The set of Pareto optimal objective values is given by
{

(f1, f2) ∈ ℜ2
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Mapping from the decision space to the objective

space

maximize [3x1 + x2;−x1 + 2x2]

subject to x1 + x2 ≤ 4, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3
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Solutions methods for multiobjective optimization

◮ Construct the efficient frontier by treating one objective as a
constraint and optimizing for the other:

maximize 3x1 + x2

subject to −x1 + 2x2 ≥ ε

x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3

◮ Here, let ε ∈ [−1, 6]. Why?

◮ What if the number of objectives is > 2?

◮ How many single objective linear programs do we have to
solve for seven objectives and ten values of εk for each
objective fk , k = 1, . . . , 7?

Lecture 11b Applied Optimization



Solution methods: preemptive optimization

◮ Consider one objective at a time—the most important first

◮ Solve for the first objective

◮ Solve for the second objective over the solution set for the first

◮ Solve for the third objective over the solution set for the
second

◮ ...

◮ The solution is an efficient point

◮ But: Different orderings of the objectives yield different
solutions

◮ Exercise: solve the previous example using preemptive
optimization on different orderings
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Solution methods: weighted sums of objectives

◮ Give each maximization (minimization) objective a positive
(negative) weight

◮ Solve a single objective maximization problem

⇒ Yields an efficient solution
◮ Well spread weights do not necessarily produce solutions that

are well spread on the efficient frontier (ex: { 1
10 ,

1
2 , 1, 2, 10})

◮ If the objectives are not concave
(maximization) or the feasible set
is not convex, as, e.g., integrality
constrained, then not all points
on the efficient frontier may be
possible to detect using weighted
sums of objectives
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Solution methods: soft constraints

◮ Consider the multiobjective optimization problem to

maximize [f1(x), . . . , fK (x)] subject to x ∈ X

◮ Define a target value tk and a deficiency variable dk ≥ 0 for
each objective fk

◮ Construct a soft constraint for each objective:

maximize fk(x) ⇒ fk(x) + dk ≥ tk , k = 1, . . . ,K

◮ Minimize the sum of deficiencies:

minimize
∑

k∈K

dk

subject to fk(x) + dk ≥ tk , k = 1, . . . ,K

dk ≥ 0, k = 1, . . . ,K

x ∈ X

◮ Important: Find first a common scale for fk , k = 1, . . . ,K
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Normalizing the objectives

◮ Consider the multiobjective optimization problem to

maximize [f1(x), . . . , fK (x)] subject to x ∈ X

◮ Let

f̃k(x) =
fk(x)

f max

k
− f min

k

, k = 1, . . . ,K ,

where f max

k
= maxx∈X fk(x) and f min

k
= minx∈X fk(x).

◮ Then, f̃k(x) ∈ [0, 1] for all x ∈ X , so that the functions f̃k can
be compared in a common scale.

Lecture 11b Applied Optimization


