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of application

» STRUCTURAL OPTIMIZATION
» Design of aircraft, ships, bridges, etc
» Decide on the material and the thickness of a mechanical
structure
» Minimize weight, maximize stiffness, constraints on
deformation at certain loads, strength, etc
» ANALYSIS AND DESIGN OF TRAFFIC NETWORKS
» Estimate traffic flows and discharges
» Detect bottlenecks
» Analyze effects of traffic signals, tolls, etc
» LEAST SQUARES—ADAPTATION OF DATA
» ENGINE DEVELOPMENT, DESIGN OF ANTENNAS, ...
for each function evaluation a simulation may be needed
» MAXIMIZE THE VOLUME OF A CYLINDER
while keeping the surface area constant
» WIND POWER GENERATION: THE ENERGY CONTENT IN
THE WIND o v3 (but Ass3b uses discretized measured data)
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An overview of nonlinear optimization

General notation of nonlinear programs

minimize yegpn f(x)
subject to  gi(x) <0, ieL,
hi(x) =0, (€&

Some special cases

» Unconstrained problems ( £L =& = 0):
minimize f(x) subject to x € R"

» Convex programming: f convex, g; convex, | € L,
h; linear,i € £.
» Linear constraints: gj, i € £, and h;, i € €
> Quadratic programming: f(x) = c¢x + 2x7Qx

> Linear programming: f(x) = ¢”x
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Properties of nonlinear programs

» The mathematical properties of nonlinear optimization
problems can be very different

» No algorithm exists that solves all nonlinear optimization
problems

» An optimal solution does not have to be located at an
extreme point

» Nonlinear programs can be unconstrained (what if a linear
program has no constraints?)

» f may be differentiable or non-differentiable (e.g., the
Lagrangean dual objective function; Ass3a)

» For convex problems: Algorithms converge to an optimal
solution

» Nonlinear problems can have local optima that are not global
optima
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Possible extremal points for

minimize f(x) subject to x € S

f(x)

:F
[
1

» boundary points of S

]
]
2 3 456 7°

» stationary points, where f'(x) =0

» discontinuities in f or f’ Draw!
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Boundary and stationary points (Ch. 10.0)

» X is a boundary point to the feasible set
S={xeR"|g(x)<0,ieL}

if gi(X) <0, i€ L, and gi(X) =0 for at least one index i€ L

> X is a stationary point to f if Vf(x) =0
(in one dimension: if f'(x) = 0)
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Local and global minima (maxima) (Ch. 2.4)

minimize f(x) subject tox € S

» X is a local minimum if X € S and f(X) < f(x) forall x € S
sufficiently close to X

» In words: A solution is a local minimum if it is feasible and no
other feasible solution in a sufficiently small neighbourhood
has a lower objective value

» Formally: 3¢ > 0 such that f(X) < f(x) for all
xeSN{xeR":|x—%| <e}

» DrAwW!!
> X is a global minimum if X € S and f(X) < f(x) forallxe S

» In words: A solution is a global minimum if it is feasible and no
other feasible solution has a lower objective value
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When is a local optimum also a global optimum?

(Ch. 9.3)

» The concept of convexity is essential
» Functions: convex (minimization), concave (maximization)
> Sets: convex (minimization and maximization)

» The minimization (maximization) of a convex (concave)
function over a convex set is referred to as a convex
optimization problem

> (Def. 9.5) If f and g;j, i € L, are convex functions, then
minimize f(x) subject to g;(x) <0, i € L
is said to be a convex optimization problem

» (Thm. 9.1) Let x* be a local optimum for a convex
optimization problem. Then x* is also a global optimum
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Convex functions

» A function f is convex on S if, for any x,y € S it holds that

flax+ (1 —a)y) <af(x)+ (1 —a)f(y) forall 0 <a <1

A CONVEX FUNCTION A NON-CONVEX FUNCTION

(ax + (1 — a)y)
af(x) + (1 — a)f(y)

af() + (1 — )F )
F(x) b=

flax + (1 — a)y)

X ax+ (1 — a)y y X  ax+(1—a)y y

» f is strictly convex on S if, for any x,y € S such that x # y it
holds that

flax+ (1 —a)y) < af(x) + (1 —a)f(y) forall 0 < a < 1
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Convex sets

> A set S is convex if, for any elements x,y € S it holds that
ax+(l—a)yeSforall0<a<1

» Examples:
Convex sets Non-convex sets

-

» Consider a set S defined by the intersection of m = ||
inequalities, where the functions g; : R" — R, i € L:

S={xeR"|g(x)<0,ieLl}

> (Thms. 9.2 & 9.3) If all the functions gj(x) i € £, are convex
on K", then S is a convex set
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The Karush-Kuhn-Tucker conditions: necessary

conditions for optimality

» Define S={xeR" |gi(x) <0,ieL}

» Assume that the functions g; : R" — R, i € L, are convex and
differentiable and that there exists a point X € S such that
gi(X) <0, ieL.

» Further, assume that f : R” — R is differentiable.

> If x* € S is alocal minimum of f over S, then there exists a
vector p € R™ (where m = |L|) such that

V) + Y wiValx) = 0"

iel
,u,-g,-(x*) = 0, el
gi(x*) < 0, i€l
po> 07
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Geometry of the Karush-Kuhn-Tucker conditions

Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions.
At a local minimum, minus the gradient of the objective can be expressed
as a non-negative linear combination of the gradients of the active
constraints at this point.
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The Karush-Kuhn-Tucker conditions: sufficient for

optimality under convexity

» Assume that the functions f, g; : R" — R, i € L, are convex
and differentiable.
» If the conditions (where m = |L|)

Vf(x*)+Zu;Vg;(x*) =0
ieL
wigi(x*) = 0, i€l
po> 07

hold, then x* € S is a global minimum of f over
S={xeR"|gi(x)<0,ieL}.

» The Karush-Kuhn-Tucker conditions can also be stated for
optimization problems with equality constraints

» For unconstrained optimization KKT reads: Vf(x*) =0

» For a quadratic program KKT forms a system of linear
(in)equalities plus the complementarity constraints
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The optimality conditions can be used to..

» verify an (local) optimal solution

» solve certain special cases of nonlinear programs (e.g.
quadratic)

» algorithm construction

» derive properties of a solution to a non-linear program
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minimize f(x) := 2x? + 2x1x + x5 — 10x; — 10x;
subject to x2+x3 < 5
3x1+x < 6

» Is x0 = (1,2)" a Karush-Kuhn-Tucker point?
» Is it an optimal solution?

> Vf(x) = (4X1 + 2x0 — 10,2x3 + 2x0 — 10)T,
Vai(x) = (2x1,2x)T, Vg (x) = (3,1)F

=
4x9 +2x§ — 10+ 2x%u1 + 31, = 0 2p1 + 3y =2
2x0 +2x9 — 10+ 2x8u1 + pp = 0 Apg + o =4
p(O9)2 + (€)2 = 5) = 12(3x¢ + 58 —6) = 0| 7 |0 = —pi = 0
P, p2 > 0 pa, p2 = 0

= =0 = pu=1>0

Lecture 13 Applied Optimization



Example, continued

» The Karush-Kuhn-Tucker conditions hold

> |s the solution optimal? Check convexity!

4 2 2 0
2 _ 2 _ 2 _ 2x2
>Vf(x)—<2 2>,Vg1(x)—<0 2>,Vg2(x)—0
= f, g1, and g» are convex

= x% = (1,2)T is an optimal solution and f(x°) = —20
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General iterative search method for unconstrained

optimization (Ch. 2.5.1)

1.
2.
3.
4,

Choose a starting solution, x° € R". Let k =0
Determine a search direction d*
If a termination criterion is fulfilled = Stop!

Determine a step length, tx, by solving:
minimize ;>o@(t) := f(x* + t - d¥)

5. New iteration point, x¥*1 = xk 4 ¢, - d¥

6. Let k := k+ 1 and return to step 2

How choose search directions d, step lengths ti, and termination
criteria?

Lecture 13 Applied Optimization



Improving search directions (Ch. 10)

> Goal: f(xk*1) < f(x¥) (minimization)
» How does f change locally in a direction d* at xk?

» Taylor expansion (Ch. 9.2):
f(xk + td¥) = £(x¥) + tVF(x*)Td* + O(?)

» For sufficiently small t > O:
f(xk + td¥) < f(xk) = VF(x)Tdk <0

= Definition:
If VF(x¥)Td* < 0 then d* is a descent direction for f at x*
If V£(x¥)Tdk > 0 then d* is an ascent direction for f at x*

» We wish to minimize (maximize) f over R":

= Choose d* as a descent (an ascent) direction from x*
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An improving step

Figur: At x¥, the descent direction d* is generated. A step t is taken in
this direction, producing x*1. At this point, a new descent direction
d**+1 is generated, and so on.
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General iterative search method for unconstrained

optimization (Ch. 2.5.1)

1. Choose a starting solution, xR Let k=0
2. Determine a search direction d*

3. If a termination criterion is fulfilled = Stop!
4. Determine a step length, tx, by solving:

minimize ¢>op(t) == F(x* + t - d¥)

5. New iteration point, xk*t1 = xk + ¢, - d¥

6. Let k:= k + 1 and return to step 2
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Step length—Iline search (minimization) (Ch. 10.4)

>

Solve ming>g ¢(t) := f(x¥ + t - d¥) where d* is a descent
direction from xk

» A minimization problem in one variable = Solution tj
» Analytic solution: ¢/(tx) =0 (seldom possible to derive)
» Numerical solution methods:

The golden section method (reduce the interval of uncertainty)
The bi-section method (reduce the interval of uncertainty)
Newton-Raphson's method

Armijo's method

vV vy vVvYy

v

In practice: Do not solve exactly, but to a sufficient
improvement of the function value:
f(xK + txd¥) < f(x¥) — ¢ for some ¢ > 0
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Line search

tx t

Figur: A line search in a descent direction.
ti solves ming>q ¢(t) := f(xK + t - d¥)
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General iterative search method for unconstrained

optimization

1. Choose a starting solution, xR Let k=0
2. Determine a search direction d*

3. If a termination criterion is fulfilled = Stop!
4. Determine a step length, tx, by solving:

minimize ¢>op(t) == F(x* + t - d¥)

5. New iteration point, xk*t1 = xk + ¢, - d¥

6. Let k:= k + 1 and return to step 2
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Termination criteria

> Needed since V£(x¥) = 0 will never be fulfilled exactly

» Typical choices (¢; >0, j=1,...,4)
(a) [IVF(x¥)|| < &1
(b) [FO<HY) — F(x)| < &2
(c) IIx**t —xK|| < e3
(d) te < &4
These are often combined

» The search method only guarantees a stationary solution,

whose properties are determined by the properties of f
(convexity, ...)
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Constrained optimization: Penalty methods

» Consider both inequality and equality constraints:

minimize yepn  (X)
subject to  gj(x) <0, €L, (1)
0

» Drop the constraints and add terms in the objective that
penalize infeasibile solutions

minimizexegn  Fu(x) == f(x) + p Z aj(x) (2)
ieLUE
=0 if x satisfies constraint /
where > 0 and «j(x) = { -0 otherwise
» Common penalty functions (which are differentiable?):
i€ L: ai(x) =max{0,gi(x)} or a;(x)=(max{0,gi(x)})?
i€& ai(x)=|h(x)| or ai(x)=hi(x)|?
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Squared and non-squared penalty functions

minimize x?> — 20In x subject to x > 5

60

)éz — 201Inx ( }
50} ~ 7 x2—20Inx+max{0,5—x} |1
\ = = = 22010 x (max{0, 5-—x})3
\
40 - \
\
30 \

20

10+

Figur: Squared and non-squared penalty function. g; differentiable =
squared penalty function differentiable

Lecture 13 Applied Optimization



Squared penalty functions

» In practice: Start with a low value of x> 0 and increase the
value as the computations proceed
» Example: minimize x2 — 20 In x subject to x > 5 (%)
= minimize x> — 20 In x + p(max{0,5 — x})? (%)

25

20

Figur: Squared penalty function: Ap < oo such that an optimal solution
for (xx) is optimal (feasible) for (x)
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Non-squared penalty functions

» In practice: Start with a low value of x> 0 and increase the
value as the computations proceed

» Example: minimize x2 — 20 In x subject to x > 5 (+)

= minimize x> — 20In x + pmax{0,5 — x} (++)

25

20

Figur: Non-squared penalty function: For u > 6 the optimal solution for
(++) is optimal (and feasible) for (+)
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Constrained optimization: Barrier methods

» Consider only inequality constraints:

minimize yexn  f(X)
subject to  gj(x) <0, i€L. (3)

» Drop the constraints and add terms in the objective that
prevents from approaching the boundary of the feasible set

minimizexeqn  Fu(x) == f(x) + Z aj(x (4)
iel

where 11 > 0 and «j(x) — +oo as gi(x) — 0 (as constraint /
approaches being active)

» Common barrier functions:
» aj(x) = —In[—gi(x)] or «ai(x)= g,_(,l()

Lecture 13 Applied Optimization




Logarithmic barrier functions

» Choose ;1 > 0 and decrease it as the computations proceed
» Example: minimize x? — 201In x subject to x > 5
= minimize y~5 x> —20Inx — pIn(x — 5)
50
40 -

30R

Figur: Logarithmic barrier function: p € {10,5,2.5,1.25,0.625,0.3125}



Fractional barrier functions

» Choose ;1 > 0 and decrease it as the computations proceed
» Example: minimize x? — 201In x subject to x > 5
= minimize x5 x? —20Inx + £

Figur: Fractional barrier function: p € {10,5,2.5,1.25,0.625}



