MVE165/MMG630, Applied Optimization Lecture 13 Overview of nonlinear programming

Ann-Brith Strömberg

2012-05-03

Areas of applications, examples (Ch. 9.1)

- ► STRUCTURAL OPTIMIZATION
 - Design of aircraft, ships, bridges, etc
 - Decide on the material and the thickness of a mechanical structure
 - Minimize weight, maximize stiffness, constraints on deformation at certain loads, strength, etc
- ► Analysis and design of traffic networks
 - Estimate traffic flows and discharges
 - Detect bottlenecks
 - Analyze effects of traffic signals, tolls, etc
- ► Least squares—adaptation of data
- ► ENGINE DEVELOPMENT, DESIGN OF ANTENNAS, ... for each function evaluation a simulation may be needed
- MAXIMIZE THE VOLUME OF A CYLINDER while keeping the surface area constant
- ▶ WIND POWER GENERATION: THE ENERGY CONTENT IN THE WIND $\propto v^3$ (but Ass3b uses discretized measured data)

An overview of nonlinear optimization

General notation of nonlinear programs

minimize
$$\mathbf{x} \in \mathbb{R}^n$$
 $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0, \quad i \in \mathcal{L},$ $h_i(\mathbf{x}) = 0, \quad i \in \mathcal{E}.$

Some special cases

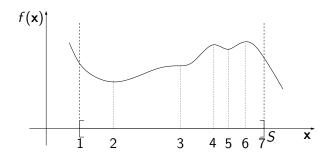
- ▶ Unconstrained problems ($\mathcal{L} = \mathcal{E} = \emptyset$): minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Re^n$
- ▶ Convex programming: f convex, g_i convex, $i \in \mathcal{L}$, h_i linear, $i \in \mathcal{E}$.
- ▶ Linear constraints: g_i , $i \in \mathcal{L}$, and h_i , $i \in \mathcal{E}$
 - Quadratic programming: $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}$
 - Linear programming: $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$

Properties of nonlinear programs

- ► The mathematical properties of nonlinear optimization problems can be very different
- No algorithm exists that solves all nonlinear optimization problems
- ➤ An optimal solution does *not* have to be located at an extreme point
- Nonlinear programs can be unconstrained (what if a linear program has no constraints?)
- ▶ f may be differentiable or non-differentiable (e.g., the Lagrangean dual objective function; Ass3a)
- ► For **convex** problems: Algorithms converge to an optimal solution
- Nonlinear problems can have local optima that are not global optima

Possible extremal points for

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$



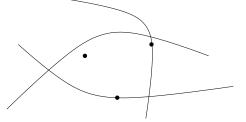
- boundary points of S
- stationary points, where $f'(\mathbf{x}) = 0$
- discontinuities in f or f' DRAW!

Boundary and stationary points (Ch. 10.0)

 $ightharpoonup \overline{\mathbf{x}}$ is a *boundary* point to the feasible set

$$S = \{\mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \le 0, i \in \mathcal{L}\}$$

if $g_i(\overline{\mathbf{x}}) \leq 0$, $i \in \mathcal{L}$, and $g_i(\overline{\mathbf{x}}) = 0$ for at least one index $i \in \mathcal{L}$



▶ $\overline{\mathbf{x}}$ is a stationary point to f if $\nabla f(\mathbf{x}) = \mathbf{0}$ (in one dimension: if f'(x) = 0)

Local and global minima (maxima) (Ch. 2.4)

minimize
$$f(\mathbf{x})$$
 subject to $\mathbf{x} \in S$

- ▶ $\overline{\mathbf{x}}$ is a local minimum if $\overline{\mathbf{x}} \in S$ and $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$ sufficiently close to $\overline{\mathbf{x}}$
 - ▶ In words: A solution is a *local* minimum if it is *feasible* and no other feasible solution in a sufficiently *small neighbourhood* has a lower objective value
 - ► Formally: $\exists \varepsilon > 0$ such that $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S \cap {\mathbf{x} \in \Re^n : \|\mathbf{x} \overline{\mathbf{x}}\| \leq \varepsilon}$
 - ► Draw!!
- ▶ $\overline{\mathbf{x}}$ is a global minimum if $\overline{\mathbf{x}} \in S$ and $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$
 - ▶ In words: A solution is a *global* minimum if it is *feasible* and no other feasible solution has a lower objective value

When is a local optimum also a global optimum? (Ch. 9.3)

- ▶ The concept of **convexity** is essential
- ► Functions: convex (minimization), concave (maximization)
- Sets: convex (minimization and maximization)
- The minimization (maximization) of a convex (concave) function over a convex set is referred to as a convex optimization problem
- ▶ (Def. 9.5) If f and g_i , $i \in \mathcal{L}$, are convex functions, then minimize $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0$, $i \in \mathcal{L}$ is said to be a *convex* optimization problem
- ► (Thm. 9.1) Let x* be a local optimum for a convex optimization problem. Then x* is also a global optimum

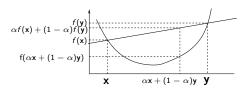
Convex functions

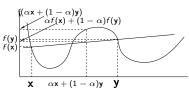
▶ A function f is *convex* on S if, for any $x, y \in S$ it holds that

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$
 for all $0 \le \alpha \le 1$

A CONVEX FUNCTION

A NON-CONVEX FUNCTION





▶ f is *strictly convex* on S if, for any $x, y \in S$ such that $x \neq y$ it holds that

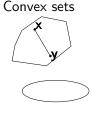
$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$
 for all $0 < \alpha < 1$

Convex sets

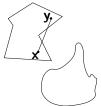
▶ A set S is convex if, for any elements $x, y \in S$ it holds that

$$\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in S$$
 for all $0 \le \alpha \le 1$

Examples:



Non-convex sets



▶ Consider a set *S* defined by the intersection of $m = |\mathcal{L}|$ inequalities, where the functions $g_i : \Re^n \mapsto \Re$, $i \in \mathcal{L}$:

$$S = \{ \mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \leq 0, \ i \in \mathcal{L} \}$$

▶ (Thms. 9.2 & 9.3) If all the functions $g_i(\mathbf{x})$ $i \in \mathcal{L}$, are convex on \Re^n , then S is a convex set

The Karush-Kuhn-Tucker conditions: necessary conditions for optimality

- ▶ Define $S = \{ \mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \leq 0, i \in \mathcal{L} \}$
- ▶ Assume that the functions $g_i: \Re^n \mapsto \Re$, $i \in \mathcal{L}$, are convex and differentiable and that there exists a point $\overline{\mathbf{x}} \in S$ such that $g_i(\overline{\mathbf{x}}) < 0$, $i \in \mathcal{L}$.
- ▶ Further, assume that $f: \Re^n \mapsto \Re$ is differentiable.
- ▶ If $\mathbf{x}^* \in S$ is a local minimum of f over S, then there exists a vector $\boldsymbol{\mu} \in \Re^m$ (where $m = |\mathcal{L}|$) such that

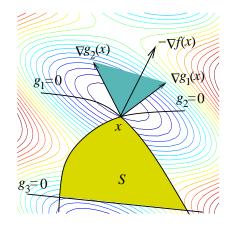
$$\nabla f(\mathbf{x}^*) + \sum_{i \in \mathcal{L}} \mu_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}^n$$

$$\mu_i g_i(\mathbf{x}^*) = 0, \quad i \in \mathcal{L}$$

$$g_i(\mathbf{x}^*) \leq 0, \quad i \in \mathcal{L}$$

$$\boldsymbol{\mu} \geq \mathbf{0}^m$$

Geometry of the Karush-Kuhn-Tucker conditions



Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions. At a local minimum, minus the gradient of the objective can be expressed as a non-negative linear combination of the gradients of the active constraints at this point.

The Karush-Kuhn-Tucker conditions: sufficient for optimality under convexity

- ▶ Assume that the functions $f, g_i : \Re^n \mapsto \Re$, $i \in \mathcal{L}$, are convex and differentiable.
- ▶ If the conditions (where $m = |\mathcal{L}|$)

$$\nabla f(\mathbf{x}^*) + \sum_{i \in \mathcal{L}} \mu_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}^n$$

$$\mu_i g_i(\mathbf{x}^*) = 0, \quad i \in \mathcal{L}$$

$$\boldsymbol{\mu} \geq \mathbf{0}^m$$

hold, then $\mathbf{x}^* \in S$ is a global minimum of f over $S = \{ \mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}) \leq 0, i \in \mathcal{L} \}.$

- ► The Karush-Kuhn-Tucker conditions can also be stated for optimization problems with equality constraints
- ▶ For unconstrained optimization KKT reads: $\nabla f(\mathbf{x}^*) = \mathbf{0}$
- ► For a quadratic program KKT forms a system of linear (in)equalities plus the complementarity constraints

The optimality conditions can be used to..

- verify an (local) optimal solution
- solve certain special cases of nonlinear programs (e.g. quadratic)
- algorithm construction
- derive properties of a solution to a non-linear program

Example

minimize
$$f(\mathbf{x}) := 2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$$

subject to $x_1^2 + x_2^2 \le 5$
 $3x_1 + x_2 \le 6$

- ▶ Is $\mathbf{x}^0 = (1,2)^{\mathrm{T}}$ a Karush-Kuhn-Tucker point?
- Is it an optimal solution?

$$\nabla f(\mathbf{x}) = (4x_1 + 2x_2 - 10, 2x_1 + 2x_2 - 10)^{\mathrm{T}}, \nabla g_1(\mathbf{x}) = (2x_1, 2x_2)^{\mathrm{T}}, \nabla g_2(\mathbf{x}) = (3, 1)^{\mathrm{T}}$$

$$\Rightarrow \begin{bmatrix} 4x_1^0 + 2x_2^0 - 10 + 2x_1^0 \mu_1 + 3\mu_2 = 0 \\ 2x_1^0 + 2x_2^0 - 10 + 2x_2^0 \mu_1 + \mu_2 = 0 \\ \mu_1((x_1^0)^2 + (x_2^0)^2 - 5) = \mu_2(3x_1^0 + x_2^0 - 6) = 0 \\ \mu_1, \mu_2 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2\mu_1 + 3\mu_2 = 2 \\ 4\mu_1 + \mu_2 = 4 \\ 0\mu_1 = -\mu_2 = 0 \\ \mu_1, \mu_2 \ge 0 \end{bmatrix}$$

Example, continued

- ▶ The Karush-Kuhn-Tucker conditions hold
- Is the solution optimal? Check convexity!

- \Rightarrow f, g_1 , and g_2 are convex
- \Rightarrow $\mathbf{x}^0 = (1,2)^{\mathrm{T}}$ is an optimal solution and $f(\mathbf{x}^0) = -20$

General iterative search method for unconstrained optimization (Ch. 2.5.1)

- 1. Choose a starting solution, $\mathbf{x}^0 \in \mathbb{R}^n$. Let k = 0
- 2. Determine a search direction \mathbf{d}^k
- 3. If a termination criterion is fulfilled \Rightarrow Stop!
- 4. Determine a step length, t_k , by solving:

minimize
$$_{t\geq 0}\varphi(t):=f(\mathbf{x}^k+t\cdot\mathbf{d}^k)$$

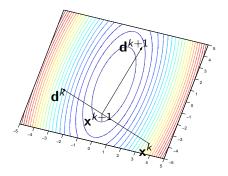
- 5. New iteration point, $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- 6. Let k := k + 1 and return to step 2

How choose search directions \mathbf{d}^k , step lengths t_k , and termination criteria?

Improving search directions (Ch. 10)

- ▶ Goal: $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$ (minimization)
- ▶ How does f change locally in a direction \mathbf{d}^k at \mathbf{x}^k ?
- ► Taylor expansion (Ch. 9.2): $f(\mathbf{x}^k + t\mathbf{d}^k) = f(\mathbf{x}^k) + t\nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k + \mathcal{O}(t^2)$
- For sufficiently small t > 0: $f(\mathbf{x}^k + t\mathbf{d}^k) < f(\mathbf{x}^k) \Rightarrow \nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k < 0$
- \Rightarrow **Definition:**If $\nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k < 0$ then \mathbf{d}^k is a descent direction for f at \mathbf{x}^k If $\nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k > 0$ then \mathbf{d}^k is an ascent direction for f at \mathbf{x}^k
- ▶ We wish to minimize (maximize) f over \Re^n :
- \Rightarrow Choose \mathbf{d}^k as a descent (an ascent) direction from \mathbf{x}^k

An improving step



Figur: At \mathbf{x}^k , the descent direction \mathbf{d}^k is generated. A step t_k is taken in this direction, producing \mathbf{x}^{k+1} . At this point, a new descent direction \mathbf{d}^{k+1} is generated, and so on.

General iterative search method for unconstrained optimization (Ch. 2.5.1)

- 1. Choose a starting solution, $\mathbf{x}^0 \in \Re^n$. Let k = 0
- 2. Determine a search direction \mathbf{d}^k
- 3. If a termination criterion is fulfilled \Rightarrow Stop!
- 4. Determine a step length, t_k , by solving:

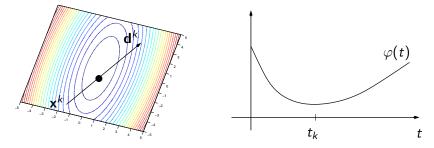
minimize
$$_{t>0}\varphi(t):=f(\mathbf{x}^k+t\cdot\mathbf{d}^k)$$

- 5. New iteration point, $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- 6. Let k := k + 1 and return to step 2

Step length—line search (minimization) (Ch. 10.4)

- ▶ Solve $\min_{t\geq 0} \varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$ where \mathbf{d}^k is a descent direction from \mathbf{x}^k
- ▶ A minimization problem in one variable \Rightarrow Solution t_k
- Analytic solution: $\varphi'(t_k) = 0$ (seldom possible to derive)
- Numerical solution methods:
 - The golden section method (reduce the interval of uncertainty)
 - The bi-section method (reduce the interval of uncertainty)
 - Newton-Raphson's method
 - Armijo's method
- In practice: Do not solve exactly, but to a sufficient improvement of the function value: f(x^k + t_kd^k) < f(x^k) − ε for some ε > 0

Line search



Figur: A line search in a descent direction. t_k solves $\min_{t\geq 0} \varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$

General iterative search method for unconstrained optimization

- 1. Choose a starting solution, $\mathbf{x}^0 \in \Re^n$. Let k = 0
- 2. Determine a search direction \mathbf{d}^k
- 3. If a termination criterion is fulfilled \Rightarrow Stop!
- 4. Determine a step length, t_k , by solving:

minimize
$$_{t>0}\varphi(t):=f(\mathbf{x}^k+t\cdot\mathbf{d}^k)$$

- 5. New iteration point, $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- 6. Let k := k + 1 and return to step 2

Termination criteria

- ▶ Needed since $\nabla f(\mathbf{x}^k) = \mathbf{0}$ will never be fulfilled exactly
- ▶ Typical choices $(\varepsilon_i > 0, j = 1, ..., 4)$
 - (a) $\|\nabla f(\mathbf{x}^k)\| < \varepsilon_1$
 - (b) $|f(\mathbf{x}^{k+1}) f(\mathbf{x}^k)| < \varepsilon_2$
 - (c) $\|\mathbf{x}^{k+1} \mathbf{x}^k\| < \varepsilon_3$
 - (d) $t_k < \varepsilon_4$

These are often combined

► The search method only guarantees a stationary solution, whose properties are determined by the properties of *f* (convexity, ...)

Constrained optimization: Penalty methods

Consider both inequality and equality constraints:

Drop the constraints and add terms in the objective that penalize infeasibile solutions

$$\operatorname{minimize}_{\mathbf{x} \in \Re^n} \ F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i \in \mathcal{L} \cup \mathcal{E}} \alpha_i(\mathbf{x})$$
 (2)

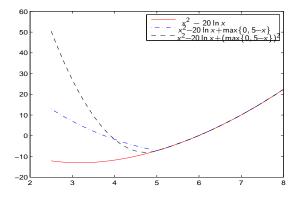
where
$$\mu > 0$$
 and $\alpha_i(\mathbf{x}) = \begin{cases} = 0 & \text{if } \mathbf{x} \text{ satisfies constraint } i \\ > 0 & \text{otherwise} \end{cases}$

Common penalty functions (which are differentiable?):

$$i \in \mathcal{L}$$
: $\alpha_i(\mathbf{x}) = \max\{0, g_i(\mathbf{x})\}$ or $\alpha_i(\mathbf{x}) = (\max\{0, g_i(\mathbf{x})\})^2$
 $i \in \mathcal{E}$: $\alpha_i(\mathbf{x}) = |h_i(\mathbf{x})|$ or $\alpha_i(\mathbf{x}) = |h_i(\mathbf{x})|^2$

Squared and non-squared penalty functions

minimize $x^2 - 20 \ln x$ subject to $x \ge 5$



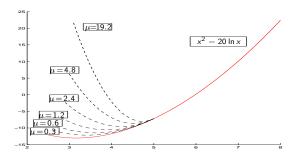
Figur: Squared and non-squared penalty function. g_i differentiable \Longrightarrow squared penalty function differentiable

Squared penalty functions

In practice: Start with a low value of $\mu>0$ and increase the value as the computations proceed

Example: minimize
$$x^2 - 20 \ln x$$
 subject to $x \ge 5$ (*)

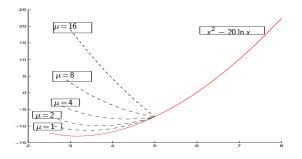
⇒ minimize
$$x^2 - 20 \ln x + \mu (\max\{0, 5 - x\})^2$$
 (**)



Figur: Squared penalty function: $\not\exists \mu < \infty$ such that an optimal solution for (**) is optimal (feasible) for (*)

Non-squared penalty functions

- In practice: Start with a low value of $\mu>0$ and increase the value as the computations proceed
- ► **Example:** minimize $x^2 20 \ln x$ subject to $x \ge 5$ (+) ⇒ minimize $x^2 - 20 \ln x + \mu \max\{0, 5 - x\}$ (++)



Figur: Non-squared penalty function: For $\mu \geq 6$ the optimal solution for (++) is optimal (and feasible) for (+)

Constrained optimization: Barrier methods

Consider only inequality constraints:

minimize
$$\mathbf{x} \in \mathbb{R}^n$$
 $f(\mathbf{x})$
subject to $g_i(\mathbf{x}) \leq 0$, $i \in \mathcal{L}$. (3)

Drop the constraints and add terms in the objective that prevents from approaching the boundary of the feasible set

minimize_{$$\mathbf{x} \in \Re^n$$} $F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i \in \mathcal{L}} \alpha_i(\mathbf{x})$ (4)

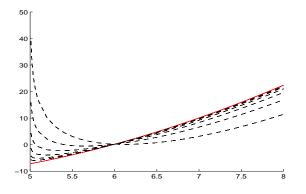
where $\mu > 0$ and $\alpha_i(\mathbf{x}) \to +\infty$ as $g_i(\mathbf{x}) \to 0$ (as constraint i approaches being active)

Common barrier functions:

$$\sim \alpha_i(\mathbf{x}) = -\ln[-g_i(\mathbf{x})] \quad \text{or} \quad \alpha_i(\mathbf{x}) = \frac{-1}{g_i(\mathbf{x})}$$

Logarithmic barrier functions

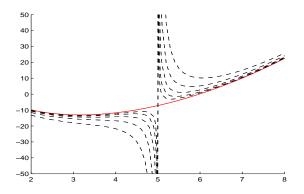
- lacktriangle Choose $\mu > 0$ and decrease it as the computations proceed
- **Example:** minimize $x^2 20 \ln x$ subject to $x \ge 5$
- \Rightarrow minimize x>5 $x^2-20 \ln x-\mu \ln (x-5)$



Figur: Logarithmic barrier function: $\mu \in \{10, 5, 2.5, 1.25, 0.625, 0.3125\}$

Fractional barrier functions

- ightharpoonup Choose $\mu > 0$ and decrease it as the computations proceed
- **Example:** minimize $x^2 20 \ln x$ subject to $x \ge 5$
- \Rightarrow minimize x>5 $x^2-20 \ln x + \frac{\mu}{x-5}$



Figur: Fractional barrier function: $\mu \in \{10, 5, 2.5, 1.25, 0.625\}$