MVE165/MMG630, Applied Optimization Lecture 2 Convexity; basic feasible solutions; the simplex method

Ann-Brith Strömberg

2012-03-15

- $\begin{bmatrix} \text{minimize or maximize } f(x_1, \dots, x_n) \\ \text{subject to } & g_i(x_1, \dots, x_n) \quad \left\{ \begin{array}{c} \leq \\ = \\ \geq \end{array} \right\} \quad b_i, \quad i = 1, \dots, m \end{bmatrix}$
 - x_1, \ldots, x_n are the decision variables
 - f and g_1, \ldots, g_m are given functions of the decision variables
 - b_1, \ldots, b_m are specified constant parameters
 - The functions can be nonlinear, e.g. quadratic, exponential, logarithmic, non-analytic, ...
 - In general, linear forms are more tractable than non-linear

Linear optimization models (programs)

- The production inventory model is a linear program (LP), i.e., all relations are described by linear forms
- A general linear program:

A generation of max $c_1 x_1 + \ldots + c_n x_n$ subject to $a_{i1} x_1 + \ldots + a_{in} x_n \quad \left\{ \begin{array}{c} \leq \\ \geq \end{array} \right\} \quad b_i, \quad i = 1, \ldots, m$ $x_j \geq 0, \quad j = 1, \ldots, n$

• The non-negativity constraints on x_i , j = 1, ..., n are not necessary, but usually assumed (reformulation always possible)

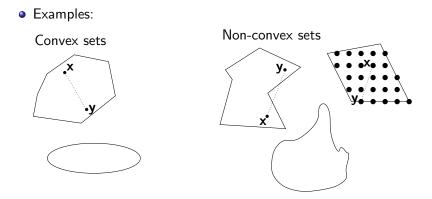
Discrete/integer/binary modelling

- A variable is called *discrete* if it can take only a countable set of values, e.g.,
 - Continuous variable: $x \in [0, 8] \iff 0 \le x \le 8$
 - Discrete variable: $x \in \{0, 4.4, 5.2, 8.0\}$
 - *Integer* variable: $x \in \{0, 1, 4, 5, 8\}$
- A binary variable can only take the values 0 or 1, i.e., all or nothing
 - E.g., a wind-mill can produce electricity only if it is built
 - Let y = 1 if the mill is built, otherwise y = 0
 - Capacity of a mill: C
 - Production $x \leq Cy$ (also limited by wind force etc.)
- In general, models with only continuous variables are more tractable than models with integrality/discrete requirements on the variables, but exceptions exist! More about this later.

Convex sets

• A set S is convex if, for any elements $\mathbf{x}, \mathbf{y} \in S$ it holds that

 $\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in S$ for all $0 \le \alpha \le 1$



 \Rightarrow Intersections of linear (in)equalities \Rightarrow convex sets

Convex and concave functions

A function f is convex on the set S if, for any elements
x, y ∈ S it holds that

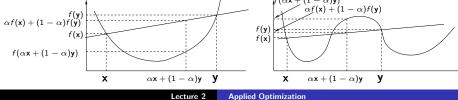
 $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$ for all $0 \le \alpha \le 1$

• A function f is concave on the set S if, for any elements $\mathbf{x}, \mathbf{y} \in S$ it holds that

 $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$ for all $0 \le \alpha \le 1$

 \Rightarrow Linear functions are convex (and concave)

Convex function Non-convex function $f^{(\alpha x + (1 - \alpha)y)}$



Global solutions of convex and linear optimization problem

- [Theorem 11.3] Let **x**^{*} be a *local* minimizer of a *convex* function over a *convex* set. Then **x**^{*} is also a *global* minimizer.
- ⇒ Every <u>local optimum</u> of a linear optimization problem is a global optimum
 - If a linear optimization problem has any optimal solutions, at least one optimal solution is at an <u>extreme point</u> of the feasible set
- \Rightarrow Search for optimal extreme point(s)
 - Next lecture: Linear optimization problems and the simplex method

minimize or maximize $c_1x_1 + \ldots + c_nx_n$

subject to
$$a_{i1}x_1 + \ldots + a_{in}x_n \quad \left\{ \begin{array}{c} \leq \\ = \\ \geq \end{array} \right\} \quad b_i, \quad i = 1, \ldots, m$$

$$x_j \quad \left\{ \begin{array}{l} \leq 0 \\ \text{unrestricted in sign} \\ \geq 0 \end{array} \right\}, \quad j = 1, \dots, n$$

• c_j , a_{ij} , and b_i are constant parameters for i = 1, ..., m and j = 1, ..., n

The standard form and the simplex method for linear programs

- Every linear program can be reformulated such that:
 - all constraints are expressed as equalities with non-negative right hand sides
 - all variables are restricted to be non-negative
- Referred to as the *standard form*
- These requirements streamline the calculations of the *simplex method*
- Software solvers (e.g., Cplex, GLPK, Clp) can handle also inequality constraints and unrestricted variables the reformulations are made automatically

The simplex method—reformulations

• The lego example:

$$\begin{bmatrix} 2x_1 & +x_2 \leq 6\\ 2x_1 & +2x_2 \leq 8\\ x_1, x_2 \geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x_1 & +x_2 & +\mathbf{s_1} = 6\\ 2x_1 & +2x_2 & +\mathbf{s_2} = 8\\ x_1, x_2, \mathbf{s_1}, \mathbf{s_2} \geq 0 \end{bmatrix}$$

- s₁ and s₂ are called *slack variables*—they "fill out" the (positive) distances between the left and right hand sides
- *Surplus variable s*₃ (a different example):

$$\left[\begin{array}{cccc} x_1 & + & x_2 & \ge & 800 \\ & x_1, x_2 & \ge & 0 \end{array}\right] \Leftrightarrow \left[\begin{array}{cccc} x_1 & + & x_2 & - & s_3 & = & 800 \\ & & x_1, x_2, s_3 & \ge & 0 \end{array}\right]$$

The simplex method—reformulations, cont.

• Non-negative right hand side:

$$\begin{bmatrix} x_1 - x_2 &\leq -23 \\ x_1, x_2 &\geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 &\geq 23 \\ x_1, x_2 &\geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 - \mathbf{s_4} &= 23 \\ x_1, x_2, \mathbf{s_4} &\geq 0 \end{bmatrix}$$

• Sign-restricted (non-negative) variables:

$$\begin{bmatrix} x_1 + x_2 \le 10 \\ x_1 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 \le 10 \\ x_1, x_2^1, x_2^2 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 + s_5 = 10 \\ x_1, x_2^1, x_2^2, s_5 \ge 0 \end{bmatrix}$$

Basic feasible solutions

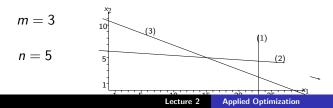
- Consider *m* equations of *n* variables, where $m \le n$
- Set n − m variables to zero and solve (if possible) the remaining (m × m) system of equations
- If the solution is *unique*, it is called a *basic* solution
- A basic solution corresponds to an *intersection* (feasible (x ≥ 0) or infeasible (x ≥ 0)) of m hyperplanes in ℜ^m
- Each extreme point of the feasible set is an intersection of m hyperplanes such that all variable values are ≥ 0
- Basic feasible solution \Leftrightarrow extreme point of the feasible set

$$\begin{array}{ll} a_{11}x_1 + \ldots + a_{1n}x_n = b_1 & x_1 \ge 0 \\ a_{21}x_1 + \ldots + a_{2n}x_n = b_2 & x_2 \ge 0 \\ & \ddots & & \ddots \\ a_{m1}x_1 + \ldots + a_{mn}x_n = b_m & x_n \ge 0 \end{array}$$

Basic feasible solutions, example

• Constraints:

• Add slack variables:

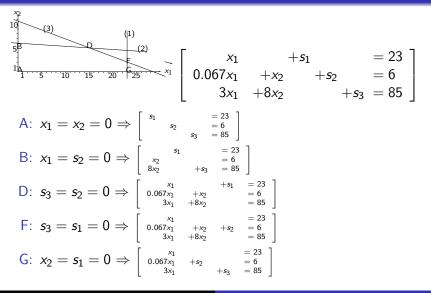


Basic and non-basic variables and solutions

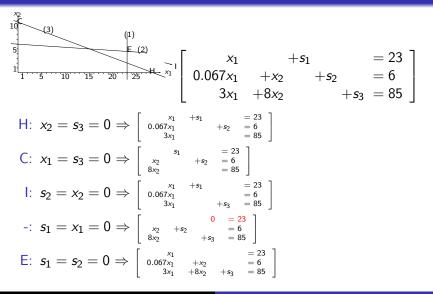
basic	ba	isic solu	tion	non-basic	point	feasible?
variables				variables (0,0)		
$\textit{s}_1,\textit{s}_2,\textit{s}_3$	23	6	85	x_1, x_2	A	yes
s_1, s_2, x_1	$-5\frac{1}{3}$	$4\frac{1}{9}$	$28\frac{1}{3}$	<i>s</i> ₃ , <i>x</i> ₂	Н	no
s_1, s_2, x_2	23	$-4\frac{5}{8}$	$10\frac{5}{8}$	<i>x</i> ₁ , <i>s</i> ₃	С	no
<i>s</i> ₁ , <i>x</i> ₁ , <i>s</i> ₃	-67	90 [°]	-185	s_2, x_2	1	no
<i>s</i> ₁ , <i>x</i> ₂ , <i>s</i> ₃	23	6	37	s_2, x_1	В	yes
x_1, s_2, s_3	23	$4\frac{7}{15}$	16	s_1, x_2	G	yes
x_2, s_2, s_3	-	-	-	s_1, x_1	-	-
<i>x</i> ₁ , <i>x</i> ₂ , <i>s</i> ₁	15	5	8	<i>s</i> ₂ , <i>s</i> ₃	D	yes
x_1, x_2, s_2	23	2	$2\frac{7}{15}$	<i>s</i> ₁ , <i>s</i> ₃	F	yes
x_1, x_2, s_3	23	2 4 <u>7</u> 15	$-19^{15}_{11}_{15}$	s_1, s_2	Е	no
	x2 10 5 5 1 4 1 4	(3)	10			 *!

Lecture 2 Applied Optimization

Basic feasible solutions correspond to solutions to the system of equations that fulfil non-negativity



Basic infeasible solutions corresp. to solutions to the system of equations with one or more variables < 0



Basic feasible solutions and the simplex method

- Express the *m* basic variables in terms of the *n m* non-basic variables
- Example: Start at $x_1 = x_2 = 0 \Rightarrow s_1$, s_2 , s_3 are *basic*

$$\begin{bmatrix} x_1 & +s_1 & = 23\\ \frac{1}{15}x_1 & +x_2 & +s_2 & = 6\\ 3x_1 & +8x_2 & +s_3 & = 85 \end{bmatrix}$$

• Express s_1 , s_2 , and s_3 in terms of x_1 and x_2 (*non-basic*):

$$\begin{bmatrix} s_1 = 23 & -x_1 \\ s_2 = 6 & -\frac{1}{15}x_1 & -x_2 \\ s_3 = 85 & -3x_1 & -8x_2 \end{bmatrix}$$

- We wish to maximize the objective function $2x_1 + 3x_2$
- Express the objective in terms of the *non-basic* variables: (maximize) $z = 2x_1 + 3x_2 \iff z - 2x_1 - 3x_2 = 0$

Basic feasible solutions and the simplex method

• The *first basic solution* can be represented as

-z	$+2x_{1}$	$+3x_{2}$				= 0	(0)
	<i>x</i> ₁		+ <i>s</i> 1			= 23	(1)
	$\frac{1}{15}x_1$	$+ x_2$		+ <i>s</i> ₂		= 6	(2)
	$3x_1$	$+8x_{2}$			+ <i>s</i> ₃	= 0 = 23 = 6 = 85	(3)

- Marginal values for increasing the non-basic variables x₁ and x₂ from zero: 2 and 3, resp.
- $\Rightarrow Choose x_2 let x_2 enter the basis DRAW GRAPH!!$
 - One basic variable $(s_1, s_2, \text{ or } s_3)$ must *leave the basis*. Which?
 - The value of x₂ can increase until some basic variable reaches the value 0:

$$\begin{array}{l} (2): s_2 = 6 - x_2 \ge 0 & \Rightarrow x_2 \le 6 \\ (3): s_3 = 85 - 8x_2 \ge 0 & \Rightarrow x_2 \le 10\frac{5}{8} \end{array} \right\} \Rightarrow \begin{array}{l} s_2 = 0 \text{ when} \\ x_2 = 6 \\ (\text{and } s_3 = 37) \end{array}$$

• s₂ will leave the basis

Change basis through row operations

• Eliminate s₂ from the basis, let x₂ enter the basis using row operations:

-z	$+2x_{1}$	$+3x_{2}$				=	0	(0)
	<i>x</i> ₁		$+s_1$			=	23	(1)
	$\frac{1}{15}x_1$	$+x_{2}$		$+s_{2}$		=	6	(2)
	$3x_1$	$+8x_{2}$			$+s_3$	=	85	(3)
-z	$+\frac{9}{5}x_1$			$-3s_{2}$		=	-18	$(0) - 3 \cdot (2)$
	<i>x</i> ₁		$+s_{1}$			=	23	$(1) - 0 \cdot (2)$
	$\frac{\frac{1}{15}}{\frac{15}{37}}x_1$	$+x_{2}$		$+s_{2}$		=	6	(2)
	$\frac{37}{15}x_1$			$-8s_{2}$	+ <i>s</i> 3	_	37	$(3) - 8 \cdot (2)$

• Corresponding basic solution: $s_1 = 23$, $x_2 = 6$, $s_3 = 37$.

- Nonbasic variables: $x_1 = s_2 = 0$
- The marginal value of x_1 is $\frac{9}{5} > 0$. Let x_1 enter the basis
- Which one should leave? s_1 , x_2 , or s_3 ?

Change basis ...

-z	$+\frac{9}{5}x_1$			-3 <i>s</i> ₂		=	-18	(0)
	x ₁		$+s_1$			=	23	(1)
	$\frac{\frac{1}{15}x_1}{\frac{37}{15}x_1}$	$+x_{2}$		$+s_{2}$		=	-18 23 6	(2)
	$\frac{37}{15}x_1$			$-8s_{2}$	$+s_3$	=	37	(3)

• The value of x₁ can increase until some basic variable reaches the value 0:

$$\begin{array}{l} (1): s_1 = 23 - x_1 \ge 0 & \Rightarrow x_1 \le 23 \\ (2): x_2 = 6 - \frac{1}{15} x_1 \ge 0 & \Rightarrow x_1 \le 90 \\ (3): s_3 = 37 - \frac{37}{15} x_1 \ge 0 & \Rightarrow x_1 \le 15 \end{array} \right\} \Rightarrow \begin{array}{l} s_3 = 0 \text{ when} \\ x_1 = 15 \end{array}$$

- x_1 enters the basis and s_3 leaves the basis
- Perform row operations:

-	-							
-z				+2.84 <i>s</i> ₂	-0.73 <i>s</i> 3		-45	$(0) - (3) \cdot \frac{15}{37} \cdot \frac{9}{5}$
			s_1	+3.24 <i>s</i> ₂	-0.41 <i>s</i> ₃	=	8	$(1)-(3)\cdot\frac{15}{37}$
		<i>x</i> ₂		$+1.22s_{2}$	-0.03 <i>s</i> ₃	=	5	$ \begin{array}{c} (0)-(3)\cdot\frac{15}{37}\cdot\frac{9}{5}\\ (1)-(3)\cdot\frac{15}{37}\\ (2)-(3)\cdot\frac{15}{37}\cdot\frac{1}{15} \end{array} $
	<i>x</i> ₁			-3.24 <i>s</i> ₂	$+0.41s_{3}$	=	15	$(3) \cdot \frac{15}{37}$

Change basis ...

- <i>z</i>			+2.84 <i>s</i> ₂	-0.73 <i>s</i> ₃	=	-45	(0)
		s_1	$+3.24s_{2}$	-0.41 <i>s</i> ₃	=	8	(1)
	<i>x</i> ₂		$+1.22s_{2}$	-0.03 <i>s</i> ₃	=	5	(2)
<i>x</i> ₁			-3.24 <i>s</i> ₂	$+0.41s_{3}$		15	(3)

• Let s_2 enter the basis (marginal value > 0)

• The value of s_2 can increase until some basic variable = 0:

$$\begin{array}{l} (1): s_1 = 8 - 3.24 s_2 \ge 0 & \Rightarrow s_2 \le 2.47 \\ (2): x_2 = 5 - 1.22 s_2 \ge 0 & \Rightarrow s_2 \le 4.10 \\ (3): x_1 = 15 + 3.24 s_2 \ge 0 & \Rightarrow s_2 \ge -4.63 \end{array} \right\} \Rightarrow \begin{array}{l} s_1 = 0 \text{ when} \\ s_2 = 2.47 \end{array}$$

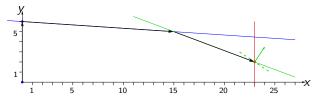
- s_2 enters the basis and s_1 will leave the basis
- Perform row operations:

-z		-0.87 <i>s</i> 1		-0.37 <i>s</i> ₃	=	-52	$(0)-(1)\cdot\frac{2.84}{3.24}$
		0.31 <i>s</i> 1	$+s_2$	-0.12 <i>s</i> ₃	=	2.47	$(1) \cdot \frac{1}{3.24}$
	<i>x</i> ₂	-0.37 <i>s</i> 1		$+0.12s_{3}$	=	2	$ \begin{array}{c} (1) \cdot \frac{1}{3.24} \\ (2) - (1) \cdot \frac{1.22}{3.24} \end{array} $
x_1		$+s_1$			=	23	(3)+(1)

Optimal basic solution

-z		-0.87 <i>s</i> 1		-0.37 <i>s</i> 3	=	-52
		0.31 <i>s</i> 1	+ <i>s</i> ₂	$-0.12s_3$	=	2.47
	<i>x</i> ₂	-0.37 <i>s</i> 1		$+0.12s_{3}$	=	2
<i>x</i> ₁		$+s_1$			=	23

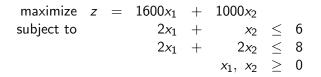
- No marginal value is positive. No improvement can be made
- The optimal basis is given by $s_2 = 2.47$, $x_2 = 2$, and $x_1 = 23$
- Non-basic variables: $s_1 = s_3 = 0$
- Optimal value: z = 52



Summary of the solution course

basis	-z	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> 3	RHS
- <i>z</i>	1	2	3	0	0	0	0
s_1	0	1	0	1	0	0	23
<i>s</i> ₂	0	0.067	1	0	1	0	6
s 3	0	3	8	0	0	1	85
-z	1	1.80	0	0	-3	0	-18
s_1	0	1	0	1	0	0	23
<i>x</i> ₂	0	0.07	1	0	1	0	6
s 3	0	2.47	0	0	-8	1	37
- <i>z</i>	1	0	0	0	2.84	-0.73	-45
s_1	0	0	0	1	3.24	-0.41	8
<i>x</i> ₂	0	0	1	0	1.22	-0.03	5
<i>x</i> ₁	0	1	0	0	-3.24	0.41	15
- <i>z</i>	1	0	0	-0.87	0	-0.37	-52
<i>s</i> ₂	0	0	0	0.31	1	-0.12	2.47
<i>x</i> ₂	0	0	1	-0.37	0	0.12	2
x_1	0	1	0	1	0	0	23

Solve the lego problem using the simplex method!



Homework!!