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Mathematical optimization models

minimize or maximize f(xy,...,X,)
< .
subject to gi(x1,...,xn) { S } bi, i=1,....m
® Xx1,...,Xp are the decision variables
o f and gi,...,gn are given functions of the decision variables
@ by,..., by, are specified constant parameters

@ The functions can be nonlinear, e.g. quadratic, exponential,
logarithmic, non-analytic, ...

@ In general, linear forms are more tractable than non-linear
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Linear optimization models (programs)

@ The production inventory model is a linear program (LP), i.e.,
all relations are described by linear forms

@ A general linear program:

[ min or max c¢ix3+ ...+ chxn T
. <
subject to ajix1 + ...+ ajnxn { S } bi, i=1,....,m
L i =z 0, j=1....n ]
@ The non-negativity constraints on x;, j = 1,...,n are not

necessary, but usually assumed (reformulation always possible)
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Discrete/integer/binary modelling

@ A variable is called discrete if it can take only a countable set
of values, e.g.,
@ Continuous variable: x € [0,8] <= 0<x <8

s Discrete variable: x € {0,4.4,5.2,8.0}
o Integer variable: x € {0,1,4,5,8}

@ A binary variable can only take the values 0 or 1, i.e., all or
nothing
E.g., a wind-mill can produce electricity only if it is built

o Let y = 1 if the mill is built, otherwise y =0
@ Capacity of a mill: C
@ Production x < Cy (also limited by wind force etc.)

@ In general, models with only continuous variables are more
tractable than models with integrality/discrete requirements
on the variables, but exceptions exist! More about this later.
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Convex sets

@ A set S is convex if, for any elements x,y € S it holds that
ax+(l—a)yeSforall0<a<1

@ Examples:

Convex sets Non-convex sets

)
D

= Intersections of linear (in)equalities = convex sets
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Convex and concave functions

@ A function f is convex on the set S if, for any elements
x,y € S it holds that

flax+ (1 —a)y) <af(x)+ (1 —a)f(y) forall 0 < a <1
@ A function f is concave on the set S if, for any elements
x,y € S it holds that
flax+ (1 —a)y) > af(x) + (1 —a)f(y) forall 0 < a <1

= Linear functions are convex (and concave)

Convex function Non-convex function

flax+ (1 — a)y)
af(x) + (1 — a)f(y)
F(y) bestoozmoazazay

f(x) =

X ax+ (1 — a)y y
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Global solutions of convex and linear optimization

problem

@ [Theorem 11.3] Let x* be a local minimizer of a convex
function over a convex set. Then x* is also a global minimizer.

= Every local optimum of a linear optimization problem is a
global optimum

@ If a linear optimization problem has any optimal solutions, at
least one optimal solution is at an extreme point of the
feasible set

= Search for optimal extreme point(s)

@ Next lecture: Linear optimization problems and the simplex
method
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A general linear program — notation

minimize or maximize C¢ix; + ...+ CpX,

<
subject to  aj1x3 + ...+ ainX, = b, i=1,...,m
>
<0
X; unrestricted insign >, j=1,....n
>0
® ¢j, ajj, and b; are constant parameters for i = 1,..., m and

j=1,...,n
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The standard form and the simplex method for

linear programs

@ Every linear program can be reformulated such that:

o all constraints are expressed as equalities with non-negative
right hand sides
o all variables are restricted to be non-negative

@ Referred to as the standard form

@ These requirements streamline the calculations of the simplex
method

@ Software solvers (e.g., Cplex, GLPK, Clp) can handle also

inequality constraints and unrestricted variables — the
reformulations are made automatically
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The simplex method—reformulations

@ The lego example:

2x1 +tx < 6 2x1  +x2 +s1 = 0
2x1 +2x < 8 | & | 2x1 +2x0 +sp, = 8
X1, X2 Z 0 X1,X2,51,52 Z 0

@ 51 and s, are called slack variables—they " fill out” the
(positive) distances between the left and right hand sides

@ Surplus variable s3 (a different example):

x1 + x» > 800 X1 + Xo — S3 =
=
X1, X2 2 0 X1,X2,53 2> 0

Lecture 2 Applied Optimization



The simplex method—reformulations, cont.

@ Non-negative right hand side:

X1 —xp < —23 PN —x1+xp > 23 PN —x1+x0 — s, =23
x1,x2 >0 x1,x2 >0 x1,x2,84 >0

@ Sign-restricted (non-negative) variables:

x1+x <10 o X1—|—X21—X22 <10 N X1—|—x21—X22—|—55 =10
X1 ZO X17X217X22 20 X17X%7X22755 > 0
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Basic feasible solutions

o Consider m equations of n variables, where m < n

@ Set n — m variables to zero and solve (if possible) the
remaining (m x m) system of equations

If the solution is unique, it is called a basic solution

A basic solution corresponds to an intersection (feasible
(x > 0) or infeasible (x 2 0)) of m hyperplanes in R™

@ Each extreme point of the feasible set is an intersection of m
hyperplanes such that all variable values are > 0

@ Basic feasible solution < extreme point of the feasible set
a11x1 + ...+ aipxp = b1 x1 >0
axnx1 + ...+ apxn = bo x2 >0
amiX1 + ...+ ampXn = bm x, >0
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Basic feasible solutions, example

@ Constraints:

N
w

(1)
(2)
(3)

X1
0.067x; + X2
3x1 + 8x
X1, X2

AV VAR VANNVAN
o 0 o
&

@ Add slack variables:
X1 +s1 =23 (1)
0.067x7 “+Xo +5 =6 (2)
3x1 +8x +s3 =285 (3)
X1,X2,51,52,53 >0

Applied Optimization
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Basic and non-basic variables and solutions

basic basic solution non-basic point  feasible?

variables variables (0, 0)

S51,52,53 23 6 85 X1, X2 A yes
s1,8, -5 43 281 53, X2 H no
51,52, X2 23 —4% 10% X1, 53 C no
S1,X1,53 —67 90 —185 52, X2 | no
S1, X2, S3 23 6 37 S, X1 B yes
X1,52,53 23 4% 16 S1,X2 G yes
X2,52,53 - - - S1,X1 - -
X1, X2, S1 15 5 8 S, S3 D yes
X1, X2, 52 23 2 21—75 51,53 F yes
X1,X2,53 23 4115 —19% 51,5 E no

T TS 5 o P X
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Basic feasible solutions correspond to solutions to

the system of equations that fulfil non-negativity

- X1 +51 =23
. 0.067x7 -+ X2 +5 =
3x;  +8x2 +s3 =85
s =23
AX1=X2=0=>{1 ° :5}
s3 =85
s =23
BX1:52:0:>|:>Q ! :6:|
8xp +s3 =85
X] +s =23
D: S3 =S5 = 0= I: 0.067xi +x0 ! —6 }
3x1  +8x =85
x =23
F:s3=51=0= { 0.067x1 4 4 —6 }
3x1  +8x =85
=23
G X2251:0:> |:00672 +5 =6 }
3x +s3 =85
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Basic infeasible solutions corresp. to solutions to the

system of equations with one or more variables < 0

_ X1 +5s1 =23
21 0.067x7 +Xxo +5 =
3x; +8x +s3 =85
[ X1 +s =23
H: Xp = S3 = 0= 0.067); ' +s, =6
3x =85
[ B =23
C: X1:S3:0:> X2 ' +s, =6 }
| 8% =85
[ X1 +s1 =23
I: 5o =x=0= | 0067 =6
3x1 +s3 =85
[ 0 =23
- 51:X]_:0:> X2  +s2 =6
| 8x +s3 =285
X: =23
E: S1 = S = 0= 0.067)& +x2 =6
3x1 +8xo +s3 =85

Lecture 2 Applied Optimization



Basic feasible solutions and the simplex method

@ Express the m basic variables in terms of the n — m non-basic
variables

@ Example: Start at x; = xo = 0 = s1, s, s3 are basic

X1 +5s1 =23
Ex1 4x +52 =6
3x1 +8x +s3 =285

@ Express s, s», and s3 in terms of x; and xy (non-basic):
51 = 23 —X1
Sy = 6 —%Xl —X2
53 = 85 —3X1 —8X2

@ We wish to maximize the objective function 2x; + 3x»

@ Express the objective in terms of the non-basic variables:

(maximize) z =2x3 + 3x & z—2x1—3x% =0
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Basic feasible solutions and the simplex method

@ The first basic solution can be represented as

-z +2x3  +3x% =0 (0)
X1 +51 =23 (1)

%Xl + X2 + S =61 (2

3x1 + 8xp +s3 =85 (3)

@ Marginal values for increasing the non-basic variables x; and
xp from zero: 2 and 3, resp.

= Choose x, — let x» enter the basis DRAW GRAPH!!
@ One basic variable (s1, s, or s3) must leave the basis. Which?
@ The value of x» can increase until some basic variable reaches
the value O:
s = 0 when
(2):5p=6—x>0 =x <6 }:> 2

=6
. = — > < § X2
(3) S3 85—-8x >0 = x< 108 (and o = 37)

@ sp will leave the basis
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Change basis through row operations

Eliminate s, from the basis, let x, enter the basis using row
operations:
-z  42x1 +3x% = 0| (0)
X1 +51 = 23 (1)
%Xl +X2 +57 = 6 (2)
3X1 +8X2 +s3 | = 85 (3)
-z +3x —3s, = —18(0) —3:(2)
X1 +51 = 23 (1)—0(2)
%Xl “+Xo +5> = 6 (2)
2Lx —8s, +s3| = 37| (3)-8(2)

Corresponding basic solution: s; = 23, x, = 6, s3 = 37.

Nonbasic variables: x; = s, =0

The marginal value of xj is % > 0. Let x; enter the basis

@ Which one should leave? s, xo, or s37
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Change basis ...

—z +3x —3s, = 18 (0)
X1 = 23 | (1)
%Xl +5> = 6 (2)
%—5X1 —8sy +s3 | = 37 (3)
@ The value of x; can increase until some basic variable reaches
the value O:
(1):51:23—X120 =x3 <23 o
(2 :0=6—2x>0 =x<9 p= 53;0_"f5‘e”
(3):s3=37T-31q>0 =x <15 1
@ xy enters the basis and s3 leaves the basis
@ Perform row operations:
—z +2.84s, —0.73s3 | = —45 (0)—(3)-%-%
s; +3.24s, —041ls3 | = 8| (1)—(3)- 2
X2 +1.22s5, —0.03s3 | = 51(2)-03) 2 &
X1 —3.24s, +04ls3 | = 15| (3)8
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Change basis ...

—z +2.84s, —0.73s3 | = —45] (0)
s1 +3.24sy —0.41s3 | = 8 (1)

X2 +1.22sp —0.03s3 | = 5 (2)

X1 —3.24s, +0.41s3 | = 15 (3)

@ Let s, enter the basis (marginal value > 0)

@ The value of s, can increase until some basic variable = 0:

(1) 151 =8-3245,>0 =5 <247
(2)ix=5-125>0 =s<410 } = :_02"“276”
(3):x=15+3245>0 =5 >—463 2=
@ s enters the basis and s; will leave the basis
@ Perform row operations:
—z —0.87s; —0.37s3 | = —52] (0)—(1)- 554
03lsy +s; —0.12s3 | = 247 | (1)-55;
xy —0.37s; +0.12s3 | = 21 (2-(01) 33
X1 —+51 = 23 (3)+(1)
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Optimal basic solution

—Z —0.8751 —0.3753 = =52
0.31sy +s» —0.12s3 | = 247

x> —0.37s1 +0.12s5 | = 2

X1 +s1 = 23

@ No marginal value is positive. No improvement can be made
@ The optimal basis is given by s = 2.47, xo = 2, and x; = 23
@ Non-basic variables: s; =s3 =0

@ Optimal value: z =52
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Summary of the solution course

basis | -z x X0 51 S s3 | RHS
—z 1 2 3 0 0 0 0
S1 0 1 0 1 0 0 23
S 0 0067 1 0 1 0 6
S3 0 3 8 0 0 1 85
—z 1 180 0 0 -3 0 -18
S1 0 1 0 1 0 0 23
X5 0 0.07 1 0 1 0 6
S3 0 247 O 0 -8 1 37
-z 1 0 0 0 284 -0.73 -45
S1 0 0 0 1 3.24 -0.41 8
X 0 0 1 0 1.22 -0.03 5
X1 0 1 0 0 -3.24 041 15
—z 1 0 0 -0.87 0 -0.37 -52
S 0 0 0 0.31 1 -0.12 | 2.47
X2 0 0 1 -0.37 0 0.12 2
X1 0 1 0 1 0 0 23
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Solve the lego problem using the simplex method!

maximize z = 1600x; + 1000x;
subject to 2x; + x < 6
2x1  + 2% < 8
xy, x2 =2 0
HoMEWORK!!
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