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Summary of the simplex method

◮ Optimality condition: The entering variable in a
maximization (minimization) problem should have the largest
positive (negative) marginal value (reduced cost).

The entering variable determines a direction in which the
objective value increases (decreases).

If all reduced costs are negative (positive), the current basis is
optimal.

◮ Feasibility condition: The leaving variable is the one with
smallest nonnegative quotient.

Corresponds to the constraint that is “reached first”
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Simplex search for linear (minimization) programs

(Ch. 4.6)

1. Initialization: Choose any feasible basis, construct the
corresponding basic solution x0, let t = 0

2. Step direction: Select a variable to enter the basis using the
optimality condition (negative marginal value). Stop if no
entering variable exists

3. Step length: Select a leaving variable using the feasibility
condition (smallest non-negative quotient)

4. New iterate: Compute the new basic solution xt+1 by
performing matrix operations.

5. Let t := t + 1 and repeat from 2
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Degeneracy (Ch. 4.10)

◮ If the smallest nonnegative quotient is zero, the value of a
basic variable will become zero in the next iteration

◮ The solution is degenerate

◮ The objective value will not improve in this iteration

◮ Risk: cycling around (non-optimal) bases

◮ Reason: a redundant constraint “touches” the feasible set

◮ Example:

x1 + x2 ≤ 6
x2 ≤ 3

x1 + 2x2 ≤ 9
x1, x2 ≥ 0
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Degeneracy

◮ Typical objective function progress of the simplex method
objective value

iteration number

◮ Computation rules to prevent from infinite cycling: careful
choices of leaving and entering variables

◮ In modern software: perturb the right hand side (bi + ∆bi),
solve, reduce the perturbation and resolve starting from the
current basis. Repeat until ∆bi = 0.
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Unbounded solutions (Ch. 4.4, 4.6)

◮ If all quotients are negative, the value of the variable entering
the basis may increase infinitely

◮ The feasible set is unbounded

◮ In a real application this would probably be due to some
incorrect assumption

◮ Example: minimize z = −x1 −2x2

subject to −x1 +x2 ≤ 2
−2x1 +x2 ≤ 1

x1, x2 ≥ 0

Draw graph!!
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Unbounded solutions (Ch. 4.4, 4.6)

◮ A feasible basis is given by x1 = 1, x2 = 3, with corresponding
tableau:
Homework: Find this basis using the simplex method.

basis −z x1 x2 s1 s2 RHS

−z 1 0 0 5 -3 7

x1 0 1 0 1 -1 1
x2 0 0 1 2 -1 3

◮ Entering variable is s2

◮ Row 1: x1 = 1 + s2 ≥ 0 ⇒ s2 ≥ −1

◮ Row 2: x2 = 3 + s2 ≥ 0 ⇒ s2 ≥ −3

◮ No leaving variable can be found, since no constraint will
prevent s2 from increasing infinitely
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Starting solution—finding an initial basis (Ch. 4.9)

◮ Example:

minimize z = 2x1 +3x2

subject to 3x1 +2x2 = 14
2x1 −4x2 ≥ 2

Draw graph!! 4x1 +3x2 ≤ 19
x1, x2 ≥ 0

◮ Add slack and surplus variables

minimize z = 2x1 +3x2

subject to 3x1 +2x2 = 14
2x1 −4x2 −s1 = 2
4x1 +3x2 +s2 = 19

x1, x2, s1, s2 ≥ 0

◮ How finding an initial basis? Only s2 is obvious!
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Artificial variables

◮ Add artificial variables a1 and a2 to the first and second
constraints, respectively

◮ Solve an artificial problem: minimize a1 + a2

minimize w = a1 +a2

subject to 3x1 +2x2 +a1 = 14
2x1 −4x2 −s1 +a2 = 2
4x1 +3x2 +s2 = 19

x1, x2, s1, s2, a1, a2 ≥ 0

◮ The “phase one” problem
◮ An initial basis is given by a1 = 14, a2 = 2, and s2 = 19:

basis −w x1 x2 s1 s2 a1 a2 RHS

−w 1 -5 2 1 0 0 0 -16

a1 0 3 2 0 0 1 0 14
a2 0 2 -4 -1 0 0 1 2
s2 0 4 3 0 1 0 0 19
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Find an initial solution using artificial variables

◮ x1 enters ⇒ a2 leaves (then x2 ⇒ s2, then s1 ⇒ a1)
basis −w x1 x2 s1 s2 a1 a2 RHS

−w 1 -5 2 1 0 0 0 -16

a1 0 3 2 0 0 1 0 14

a2 0 2 -4 -1 0 0 1 2

s2 0 4 3 0 1 0 0 19

−w 1 0 -8 -1.5 0 0 -11

a1 0 0 8 1.5 0 1 11

x1 0 1 -2 -0.5 0 0 1

s2 0 0 11 2 1 0 15

−w 1 0 0 -0.045 0.727 0 -0.091

a1 0 0 0 0.045 -0.727 1 0.091

x1 0 1 0 -0.136 0.182 0 3.727

x2 0 0 1 0.182 0.091 0 1.364

−w 1 0 0 0 0 0

s1 0 0 0 1 -16 2

x1 0 1 0 0 -2 4

x2 0 0 1 0 3 1

◮ A feasible basis is given by x1 = 4, x2 = 1, and s1 = 2
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Infeasible linear programs (Ch. 4.9)

◮ If the solution to the “phase one” problem has optimal value
= 0, a feasible basis has been found

⇒ Start optimizing the original objective function z from this
basis (homework)

◮ If the solution to the “phase one” problem has optimal value
w > 0, no feasible solutions exist

◮ What would this mean in a real application?

◮ Alternative: Big-M method: Add the artificial variables to the
original objective—with a large coefficient
Example:

minimize z = 2x1 + 3x2

⇒ minimize za = 2x1 + 3x2 + Ma1 + Ma2
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Alternative optimal solutions (Ch. 4.6)

◮ Example:

maximize z = 2x1 +4x2

subject to x1 +2x2 ≤ 5
x1 +x2 ≤ 4

Draw graph!! x1, x2 ≥ 0

◮ The extreme points (0, 5

2
) and (3, 1) have the same optimal

value z = 10

◮ All solutions that are positive linear (convex) combinations of
these are optimal:

(x1, x2) = α · (0,
5

2
) + (1 − α) · (3, 1), 0 ≤ α ≤ 1
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A general linear program in standard form

◮ A linear program with n non-negative variables, m equality
constraints (m < n), and non-negative right hand sides:

maximize z =

n
∑

j=1

cjxj

subject to

n
∑

j=1

aijxj = bi , i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n.

◮ On matrix form it is written as:

maximize z = cTx,

subject to Ax = b,

x ≥ 0n
,

where x ∈ ℜn, A ∈ ℜm×n, b ∈ ℜm
+ (b ≥ 0m), and c ∈ ℜn.
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General derivation of the simplex method (Ch. 4.8)

◮ B = set of basic variables, N = set of non-basic variables

⇒ |B | = m and |N| = n − m

◮ Partition matrix/vectors: A=(B,N), x=(xB , xN), c=(cB , cN)
◮ The matrix B (N) contains the columns of A corresponding

to the index set B (N) — Analogously for x and c
◮ Rewrite the linear program:







maximize z = cTx

subject to Ax = b,

x ≥ 0n






=







maximize z = cT

BxB + cT

NxN

subject to BxB + NxN = b,

xB ≥ 0m
, xN ≥ 0n−m







◮ Substitute: xB = B−1b − B−1NxN =⇒

maximize z = cT

BB−1b + [cT

N − cT

BB−1N]xN

subject to B−1b − B−1NxN ≥ 0m
,

xN ≥ 0n−m
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Optimality and feasibility

◮ Optimality condition (for maximization)

The basis B is optimal if cT

N − cT

BB−1N ≤ 0n−m

(marginal values = reduced costs ≤ 0)

If not, choose as entering variable j ∈ N the one with the
largest value of the reduced cost cj − cT

BB−1Aj

◮ Feasibility condition

For all i ∈ B it holds that xi = (B−1b)i − (B−1Aj)ixj

Choose the leaving variable i∗ ∈ B according to

i∗ = arg min
i∈B

{

(B−1b)i
(B−1Aj)i

∣

∣

∣

∣

(B−1Aj)i > 0

}
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In the simplex tableau, we have

basis −z xB xN s RHS

−z 1 0 cT

N − cT

BB−1N −cT

BB−1 −cT

BB−1b

xB 0 I B−1N B−1 B−1b

◮ s denotes possible slack variables (columns for s are copies of
certain columns for (xB , xN))

◮ The computations performed by the simplex algorithm involve
matrix inversions and updates of these

◮ A non-basic (basic) variable enters (leaves) the basis ⇒ one
column, Aj , of B is replaced by another, Ak

◮ Row operations ⇔ Updates of B−1 (and B−1N, B−1b, and
cT

BB−1)

⇒ Efficient numerical computations are crucial for the
performance of the simplex algorithm
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“Intuitive” derivation of duality (Ch. 6.1)

◮ A linear program with optimal value z∗

maximize z := 20x1 +18x2 weights
subject to 7x1 +10x2 ≤ 3600 (1) v1

16x1 +12x2 ≤ 5400 (2) v2

x1, x2 ≥ 0

◮ How large can z∗ be?
◮ Compute upper estimates of z∗, e.g.

◮ Multiply (1) by 3 ⇒ 21x1 + 30x2 ≤ 10800 ⇒ z∗ ≤ 10800
◮ Multiply (2) by 1.5 ⇒ 24x1 + 18x2 ≤ 8100 ⇒ z∗ ≤ 8100
◮ Combine: 0.6×(1)+1×(2) ⇒ 20.2x1+18x2≤7560 ⇒ z∗≤7560

◮ Do better than guess—compute optimal weights!

◮ Value of estimate: w = 3600v1 + 5400v2 → min

◮ Constraints on weights:





7v1 + 16v2 ≥ 20
10v1 + 12v2 ≥ 18

v1, v2 ≥ 0
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The best (lowest) possible upper estimate of z
∗

minimize w := 3600v1 + 5400v2

subject to 7v1 + 16v2 ≥ 20
10v1 + 12v2 ≥ 18

v1, v2 ≥ 0

◮ A linear program!

◮ It is called the dual of the original linear program
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The lego model – the market problem

◮ Consider the lego problem

maximize z = 1600x1 + 1000x2

subject to 2x1 + x2 ≤ 6
2x1 + 2x2 ≤ 8

x1, x2 ≥ 0

◮ Option: Sell bricks instead of making furniture

◮ v1(v2) = price of a large (small) brick

◮ Market wish to minimize payment: minimize 6v1 + 8v2

◮ I sell if prices are high enough:
◮ 2v1 + 2v2 ≥ 1600 – otherwise better to make tables
◮ v1 + 2v2 ≥ 1000 – otherwise better to make chairs
◮ v1, v2 ≥ 0 – prices are naturally non-negative
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Linear programming duality

◮ To each primal linear program corresponds a dual linear
program

[Primal] minimize z = cTx,

subject to Ax = b,

x ≥ 0n
,

[Dual] maximize w = bTy,

subject to ATy ≤ c.

◮ On component form:
[Primal] minimize z =

∑n
j=1

cjxj

subject to
∑n

j=1
aijxj = bi , i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n,

[Dual] maximize w =
∑n

j=1
biyi

subject to
∑m

i=1
aijyi ≤ cj , j = 1, . . . , n.
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An example

◮ A primal linear program

minimize z = 2x1 +3x2

subject to 3x1 +2x2 = 14
2x1 −4x2 ≥ 2
4x1 +3x2 ≤ 19

x1, x2 ≥ 0

◮ The corresponding dual linear program

maximize w = 14y1 +2y2 +19y3

subject to 3y1 +2y2 +4y3 ≤ 2
2y1 −4y2 +3y3 ≤ 3
y1 free,

y2 ≥ 0,
y3 ≤ 0
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Rules for constructing the dual program (Ch. 6.2)

maximization ⇔ minimization

dual program ⇔ primal program
primal program ⇔ dual program

constraints variables

≥ ⇔ ≤ 0
≤ ⇔ ≥ 0
= ⇔ free

variables constraints

≥ 0 ⇔ ≥
≤ 0 ⇔ ≤
free ⇔ =

The dual of the dual of any linear program equals the primal
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Duality properties (Ch. 6.3)

◮ Weak duality: Let x be a feasible point in the primal
(minimization) and y be a feasible point in the dual
(maximization). Then,

z = cTx ≥ bTy = w

◮ Strong duality: In a pair of primal and dual linear programs,
if one of them has an optimal solution, so does the other, and
their optimal values are equal.

◮ Complementary slackness: If x is optimal in the primal and
y is optimal in the dual, then xT(c− ATy) = yT(b −Ax) = 0.

If x is feasible in the primal, y is feasible in the dual, and
xT(c − ATy) = yT(b − Ax) = 0, then x and y are optimal for
their respective problems.
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Relations between primal and dual optimal solutions

primal (dual) problem ⇐⇒ dual (primal) problem

unique and ⇐⇒ unique and
non-degenerate solution non-degenerate solution

unbounded solution =⇒ no feasible solutions

no feasible solutions =⇒ unbounded solution or
no feasible solutions

degenerate solution ⇐⇒ alternative solutions
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Exercises on duality

Homework!

◮ Formulate and solve graphically the dual of:

minimize z = 6x1 +3x2 +x3

subject to 6x1 −3x2 +x3 ≥ 2
3x1 +4x2 +x3 ≥ 5

x1, x2, x3 ≥ 0

◮ Then find the optimal primal solution

◮ Verify that the dual of the dual equals the primal
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