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Summary of the simplex method

» Optimality condition: The entering variable in a
maximization (minimization) problem should have the largest
positive (negative) marginal value (reduced cost).

The entering variable determines a direction in which the
objective value increases (decreases).

If all reduced costs are negative (positive), the current basis is
optimal.

» Feasibility condition: The /eaving variable is the one with
smallest nonnegative quotient.

Corresponds to the constraint that is “reached first”
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Simplex search for linear (minimization) programs

(Ch. 4.6)

1. Initialization: Choose any feasible basis, construct the
corresponding basic solution x°, let t = 0

2. Step direction: Select a variable to enter the basis using the
optimality condition (negative marginal value). Stop if no
entering variable exists

3. Step length: Select a leaving variable using the feasibility
condition (smallest non-negative quotient)

4. New iterate: Compute the new basic solution x!*1 by
performing matrix operations.

5. Let t :=t+ 1 and repeat from 2
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Degeneracy (Ch. 4.10)

» If the smallest nonnegative quotient is zero, the value of a
basic variable will become zero in the next iteration

» The solution is degenerate
» The objective value will not improve in this iteration
» Risk: cycling around (non-optimal) bases
» Reason: a redundant constraint “touches” the feasible set
» Example:
x1 + x < 6
X2 < 3
x1 4+ 2% < 9
x1, 2 =2 0
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» Typical objective function progress of the simplex method

objective value

iteration number

» Computation rules to prevent from infinite cycling: careful
choices of leaving and entering variables

» In modern software: perturb the right hand side (b; + Ab;),
solve, reduce the perturbation and resolve starting from the
current basis. Repeat until Ab; = 0.
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Unbounded solutions (Ch. 4.4, 4.6)

» If all quotients are negative, the value of the variable entering
the basis may increase infinitely

» The feasible set is unbounded

» In a real application this would probably be due to some
incorrect assumption

» Example:

minimize z= —x3 —2xp
subject to X1 +x <2
-2x1 +x <1
x1, x2 >0

DRAW GRAPH!!
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Unbounded solutions (Ch. 4.4, 4.6)

>

A feasible basis is given by x; = 1, xo = 3, with corresponding
tableau:
Homework: Find this basis using the simplex method.

basis | —z x; x» s s | RHS
—z 1 0 0 5 -3 7
X1 0o 1 0 1 -1 1
X0 o 0 1 2 -1 3

Entering variable is s,
Rwl:xi=14+5>0=s5>-1
Row 2: x0 =3+ >0= s> -3

No leaving variable can be found, since no constraint will
prevent sy from increasing infinitely

vV v. v Yy
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Starting solution—finding an initial basis (Ch. 4.9)

» Example:
minimize z= 2x;3 +3x
subject to 3x1 +2x =14
2X1 —4X2 > 2
DRAW GRAPH!! 4x; +3x <19
X1, X2 > 0

» Add slack and surplus variables

minimize z= 2x; +3x
subject to 3x1 +2x =14
2X1 —4X2 —S51 =
4x; +3x +s, =19

X1, X2, 51,52 >0

» How finding an initial basis? Only s is obvious!
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Artificial variables

» Add artificial variables a; and a> to the first and second
constraints, respectively
» Solve an artificial problem: minimize a; + a»

minimize w = a;y +as
subject to 3x1 +2x +a1 =14
2X1 —4X2 —$51 +ar, = 2
4x;  +3x +5> =19

X1,X2,81,%,a1,a2 >0

» The “phase one” problem
» An initial basis is given by a; = 14, a, = 2, and s, = 19:

basis | —w x; x» s s a; a» | RHS
—w 1 5 2 1 0 0 0 -16
a 0 3.2 0 0 1 o0 14

ao 0 2 4 -1 0 0 1 2

S> 0 4 3 0 1 0 O 19
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Find an initial solution using artificial variables

> xj enters = ap leaves (then xa = s, then 53 = a1)

basis | —w x1 x» 51 S a  a RHS
—w 1 -5 2 1 0 0 0 -16
ai 0 3 2 0 0 1 0 14
a 0 2 -4 -1 0 0 1 2
S 0 4 3 0 1 0 0 19
—-w 1 0 -8 -15 0 0 -11
ai 0 0 8 1.5 0 1 11
X1 0 1 -2 -0.5 0 0 1
S 0 O 11 2 1 0 15
—w 1 0 0 -0.045 0.727 0 -0.091
ai 0 O 0 0.045 -0.727 1 0.091
X1 0 1 0 -0.136  0.182 0 3.727
X2 0 O 1 0.182 0.091 0 1.364
—w 1 0 0 0 0 0
s1 0 O 0 1 -16 2
X1 0 1 0 0 -2 4
X2 0 O 1 0 3 1

» A feasible basis is given by x; =4, xo =1, and s =2
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Infeasible linear programs (Ch. 4.9)

» If the solution to the “phase one” problem has optimal value
= 0, a feasible basis has been found

= Start optimizing the original objective function z from this
basis (homework)

» If the solution to the “phase one” problem has optimal value
w > 0, no feasible solutions exist

» What would this mean in a real application?

> Alternative: Big-M method: Add the artificial variables to the
original objective—with a large coefficient
Example:
minimize z = 2x1 + 3xo

= minimize z; = 2x1 + 3xo + Ma; + May
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Alternative optimal solutions (Ch. 4.6)

» Example:
maximize z = 2x1 +4x
subject to x1 +2x <5
x1  tx <4
DRrAW GRAPH!! x1,xo >0

» The extreme points (0, 3) and (3,1) have the same optimal
value z =10

» All solutions that are positive linear (convex) combinations of
these are optimal:
5

J+(1—-a)-(3,1), 0<a<l1

(X1,X2) = - (0, >
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A general linear program in standard form

» A linear program with n non-negative variables, m equality
constraints (m < n), and non-negative right hand sides:

n
maximize z:g G X;

Jj=1
n
subject to Za,-jxj- = bj, i=1...,m,
j=1
x> 0, j=1....n
» On matrix form it is written as:
. o
maximize zZ =C X,
subject to Ax = b,
x> 0"

where x € R”, A€ R™", b e RT (b>07), and c € R".



General derivation of the simplex method (Ch. 4.8)

» B = set of basic variables, N = set of non-basic variables

= |[Bl|=mand [N|=n—m

» Partition matrixfvectors: A=(B,N), x=(xg,xy), c=(cg, cy)

» The matrix B (N) contains the columns of A corresponding
to the index set B (N) — Analogously for x and ¢

> Rewrite the linear program:

maximize z = ¢'x maximize z = CgXg + CyXy
subject to Ax = b,| = | subject to Bxg + Nxy = b,
x>0 xg > 07 xy>0"""

» Substitute: xg = B7'b — B~ INxy =
maximize z = c5B7'b + [c}, — c5B 7 N]xy
subject to B 'b— B !Nxy > 07,
XN Z On—m
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Optimality and feasibility

» Optimality condition (for maximization)

The basis B is optimal if ¢}, — c5B7IN <07~ ™
(marginal values = reduced costs < 0)

If not, choose as entering variable j € N the one with the
largest value of the reduced cost ¢; — cTBB_lAj

» Feasibility condition
For all i € B it holds that x; = (B7!b); — (B71A;);x

Choose the leaving variable i* € B according to

.k . (B_lb)i -1
i :argrljglg{m (B7™Aj)i >0
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In the simplex tableau, we have

basis | —z xg XN s RHS
—z | 1 0 cy—ctB'N|—cEtB | —cE5B'b

xg | 0 1 B-IN B! B~'b

» s denotes possible slack variables (columns for s are copies of
certain columns for (xg,xy))

» The computations performed by the simplex algorithm involve
matrix inversions and updates of these

» A non-basic (basic) variable enters (leaves) the basis = one
column, A;, of B is replaced by another, Ay

» Row operations < Updates of B™1 (and B~IN, B~!b, and
c;B1)

= Efficient numerical computations are crucial for the
performance of the simplex algorithm
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“Intuitive” derivation of duality (Ch. 6.1)

» A linear program with optimal value z*

maximize z:= 20x; +18x» weights
subject to 7x1 +10x; <3600 (1) vi
16x; +12x; <5400 (2) Vo
X1, X2 Z 0

v

How large can z* be?
Compute upper estimates of z*, e.g.
» Multiply (1) by 3 = 21x; + 30x, < 10800 = z* < 10800
» Multiply (2) by 1.5 = 24x; + 18x, < 8100 = z* < 8100
» Combine: 0.6x(1)+1x(2) = 20.2x;+18x, <7560 = z* <7560

Do better than guess—compute optimal weights!

Value of estimate: w = 3600v; + 5400v> — min
Tvi +16v, > 20
Constraints on weights: | 10v; + 12v, > 18
vi,va >0
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The best (lowest) possible upper estimate of z*

minimize w := 3600v; + 5400w

subject to Tvi + 16v, > 20
10vy + 12w, >18
vi,vo >0

» A linear program!

» It is called the dual of the original linear program
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The lego model — the market problem

» Consider the lego problem

maximize z = 1600x; + 1000x»

subject to 2x1 + x < 06
2x1  + 2% < 8
xy, x2 = 0

» Option: Sell bricks instead of making furniture
> vi(v2) = price of a large (small) brick
» Market wish to minimize payment:  minimize 6vi 4 8wy

» | sell if prices are high enough:

» 2v; + 2w, > 1600 — otherwise better to make tables
» vi + 2w, > 1000 — otherwise better to make chairs
> vi, v >0 — prices are naturally non-negative
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Linear programming duality

» To each primal linear program corresponds a dual linear

program
[Primal] minimize z=c"x,
subject to Ax = b,
x>0"
[Dual] maximize w=Db"y,

subject to A"y <c.

» On component form:
[Primal]  minimize z =37,
subject to doiiaip = b, i=1...,m,
xi > 0, j=1,...,n,
[Dual] maximize w =37 biy;
subject to Simiaiyi < ¢, j=1,...,n
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An example

» A primal linear program

minimize z= 2x; +3x
subject to 3x1 +2x =14
2X1 —4X2 22
4X1 —|—3X2 §19
x1,x2 >0
» The corresponding dual linear program
maximize w = 14y; 42y, +19y3
subject to 3yi +2y>  +4y3
21 —4y>  +3y3
»n
Y2
Y3

<2
<3
free
>0
<0

)

9
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Rules for constructing the dual program (Ch.

maximization < minimization
dual program < primal program
primal program < dual program

constraints variables

> & <0
< & >0

= & free

variables constraints

>0 < >

<0 < <

free & =

The dual of the dual of any linear program equals the primal
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Duality properties (Ch. 6.3)

» Weak duality: Let x be a feasible point in the primal
(minimization) and y be a feasible point in the dual
(maximization). Then,

z=c"x>b'y=w

» Strong duality: In a pair of primal and dual linear programs,
if one of them has an optimal solution, so does the other, and
their optimal values are equal.

» Complementary slackness: If x is optimal in the primal and
y is optimal in the dual, then x"(c — A"y) = y"(b — Ax) = 0.

If x is feasible in the primal, y is feasible in the dual, and
x"(c — ATy) = y"(b — Ax) = 0, then x and y are optimal for
their respective problems.
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Relations between primal and dual optimal solutions

primal (dual) problem <= dual (primal) problem

unique and —= unique and
non-degenerate solution non-degenerate solution
unbounded solution = no feasible solutions
no feasible solutions =  unbounded solution or
no feasible solutions
degenerate solution = alternative solutions
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Exercises on duality

HOMEWORK!

» Formulate and solve graphically the dual of:

minimize z= 6x; +3x —+x3
subject to 6x; —3xp +x3 >2
3x1 +4x2 +x3 >5
X1, X2, X3 > 0

» Then find the optimal primal solution

» Verify that the dual of the dual equals the primal
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