MVE165/MMG630, Applied Optimization Lecture 3 The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation

Ann-Brith Strömberg

2012-03-16

Summary of the simplex method

 Optimality condition: The *entering* variable in a maximization (minimization) problem should have the largest positive (negative) marginal value (reduced cost).

The entering variable *determines a direction* in which the objective value increases (decreases).

If all *reduced costs are negative* (positive), the current basis is *optimal*.

Feasibility condition: The *leaving* variable is the one with smallest nonnegative quotient.

Corresponds to the constraint that is "reached first"

Simplex search for linear (minimization) programs (Ch. 4.6)

- 1. Initialization: Choose any feasible basis, construct the corresponding basic solution \mathbf{x}^0 , let t = 0
- 2. **Step direction:** Select a variable to enter the basis using the optimality condition (negative marginal value). Stop if no entering variable exists
- 3. **Step length:** Select a leaving variable using the feasibility condition (smallest non-negative quotient)
- New iterate: Compute the new basic solution x^{t+1} by performing matrix operations.
- 5. Let t := t + 1 and repeat from 2

Degeneracy (Ch. 4.10)

- If the smallest nonnegative quotient is zero, the value of a basic variable will become zero in the next iteration
- The solution is *degenerate*
- The objective value will not improve in this iteration
- Risk: cycling around (non-optimal) bases
- Reason: a redundant constraint "touches" the feasible set
- Example:

- Computation rules to prevent from infinite cycling: careful choices of leaving and entering variables
- In modern software: perturb the right hand side (b_i + Δb_i), solve, reduce the perturbation and resolve starting from the current basis. Repeat until Δb_i = 0.

Unbounded solutions (Ch. 4.4, 4.6)

- If all quotients are *negative*, the value of the variable entering the basis may increase *infinitely*
- ► The feasible set is *unbounded*
- In a real application this would probably be due to some incorrect assumption

Example: minimize
$$z = -x_1 - 2x_2$$

subject to $-x_1 + x_2 \le 2$
 $-2x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

Draw graph!!

Unbounded solutions (Ch. 4.4, 4.6)

► A feasible basis is given by x₁ = 1, x₂ = 3, with corresponding tableau:

Homework: Find this basis using the simplex method.

basis	-z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	RHS
- <i>z</i>	1	0	0	5	-3	7
<i>x</i> ₁	0	1	0	1	-1	1
<i>x</i> ₂	0	0	1	2	-1	3

- Entering variable is s₂
- Row 1: $x_1 = 1 + s_2 \ge 0 \Rightarrow s_2 \ge -1$
- $\blacktriangleright \text{ Row } 2: x_2 = 3 + s_2 \ge 0 \Rightarrow s_2 \ge -3$
- No leaving variable can be found, since no constraint will prevent s₂ from increasing infinitely

Starting solution—finding an initial basis (Ch. 4.9)

Example:

	minimize	<i>z</i> =	$2x_1$	$+3x_{2}$	
	subject to		$3x_1$	$+2x_{2}$	= 14
			$2x_1$	$-4x_{2}$	≥ 2
Draw graph!!			$4x_1$	$+3x_{2}$	\leq 19
				x_1, x_2	\geq 0

Add slack and surplus variables

minimize	z =	$2x_1$	$+3x_{2}$		
subject to		$3x_1$	$+2x_{2}$		= 14
		$2x_1$	$-4x_{2}$	$-s_1$	= 2
		$4x_1$	$+3x_{2}$	$+s_{2}$	= 19
				x_1, x_2, s_1, s_2	\geq 0

How finding an initial basis? Only s₂ is obvious!

Artificial variables

- Add artificial variables a₁ and a₂ to the first and second constraints, respectively
- Solve an artificial problem: minimize $a_1 + a_2$

- The "phase one" problem
- An initial basis is given by $a_1 = 14$, $a_2 = 2$, and $s_2 = 19$:

basis	-w	x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	a_1	a_2	RHS
-w	1	-5	2	1	0	0	0	-16
a ₁	0	3	2	0	0	1	0	14
a ₂	0	2	-4	-1	0	0	1	2
<i>s</i> ₂	0	4	3	0	1	0	0	19

Find an initial solution using artificial variables

x ₁ en	ters =	⇒ a ₂	leav	es (then	$x_2 \Rightarrow s_2$	2, th	en <i>s</i> 1	$\Rightarrow a_1)$
basis	-w	x_1	<i>x</i> ₂	s 1	s ₂	a_1	a 2	RHS
-w	1	-5	2	1	0	0	0	-16
a 1	0	3	2	0	0	1	0	14
a ₂	0	2	-4	-1	0	0	1	2
s ₂	0	4	3	0	1	0	0	19
-w	1	0	-8	-1.5	0	0		-11
a 1	0	0	8	1.5	0	1		11
<i>x</i> ₁	0	1	-2	-0.5	0	0		1
s ₂	0	0	11	2	1	0		15
-w	1	0	0	-0.045	0.727	0		-0.091
a_1	0	0	0	0.045	-0.727	1		0.091
<i>x</i> ₁	0	1	0	-0.136	0.182	0		3.727
<i>x</i> ₂	0	0	1	0.182	0.091	0		1.364
-w	1	0	0	0	0			0
S 1	0	0	0	1	-16			2
x_1	0	1	0	0	-2			4
<i>x</i> ₂	0	0	1	0	3			1
A fea	sible b	basis	is gi	ven by 2	$x_1 = 4, 2$	$x_2 =$	1, a	nd $s_1 = 2$

Infeasible linear programs (Ch. 4.9)

- If the solution to the "phase one" problem has optimal value
 = 0, a feasible basis has been found
- ⇒ Start optimizing the original objective function z from this basis (homework)
 - If the solution to the "phase one" problem has optimal value w > 0, no feasible solutions exist
 - What would this mean in a real application?
 - Alternative: Big-M method: Add the artificial variables to the original objective—with a large coefficient Example:

minimize
$$z = 2x_1 + 3x_2$$

 $\Rightarrow \qquad \text{minimize} \quad z_a = 2x_1 + 3x_2 + Ma_1 + Ma_2$

Alternative optimal solutions (Ch. 4.6)

Example:

	maximize	z =	$2x_1$	$+4x_{2}$	
	subject to		<i>x</i> ₁	$+2x_{2}$	\leq 5
			<i>x</i> ₁	$+x_{2}$	\leq 4
Draw graph!!				x_1, x_2	\geq 0

- ► The extreme points (0, ⁵/₂) and (3, 1) have the same optimal value z = 10
- All solutions that are positive linear (convex) combinations of these are optimal:

$$(x_1, x_2) = \alpha \cdot (0, \frac{5}{2}) + (1 - \alpha) \cdot (3, 1), \quad 0 \le \alpha \le 1$$

A general linear program in standard form

► A linear program with n non-negative variables, m equality constraints (m < n), and non-negative right hand sides:</p>

maximize
$$z = \sum_{\substack{j=1 \ n}}^{n} c_j x_j$$

subject to $\sum_{\substack{j=1 \ n}}^{n} a_{ij} x_j = b_i, \quad i = 1, \dots, m,$
 $x_j \ge 0, \quad j = 1, \dots, n.$

On matrix form it is written as:

$$\begin{array}{ll} \text{maximize} & z = \mathbf{c}^{\mathrm{T}} \mathbf{x}, \\ \text{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}^n, \end{array}$$

where $\mathbf{x} \in \Re^n$, $\mathbf{A} \in \Re^{m \times n}$, $\mathbf{b} \in \Re^m_+$ ($\mathbf{b} \ge \mathbf{0}^m$), and $\mathbf{c} \in \Re^n$.

General derivation of the simplex method (Ch. 4.8)

• B = set of basic variables, N = set of non-basic variables

$$\Rightarrow |B| = m$$
 and $|N| = n - m$

- ▶ Partition matrix/vectors: $\mathbf{A} = (\mathbf{B}, \mathbf{N})$, $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$, $\mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$
- The matrix B (N) contains the columns of A corresponding to the index set B (N) — Analogously for x and c
- Rewrite the linear program:

$$\begin{bmatrix} \text{maximize } z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \text{subject to } \mathbf{A} \mathbf{x} = \mathbf{b}, \\ \mathbf{x} \ge \mathbf{0}^{n} \end{bmatrix} = \begin{bmatrix} \text{maximize } z = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{x}_{B} + \mathbf{c}_{N}^{\mathrm{T}} \mathbf{x}_{N} \\ \text{subject to } \mathbf{B} \mathbf{x}_{B} + \mathbf{N} \mathbf{x}_{N} = \mathbf{b}, \\ \mathbf{x}_{B} \ge \mathbf{0}^{m}, \ \mathbf{x}_{N} \ge \mathbf{0}^{n-m} \end{bmatrix}$$

• Substitute: $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \Longrightarrow$

$$\begin{array}{ll} \text{maximize} & z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N \\ \text{subject to} & \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m, \\ & \mathbf{x}_N \geq \mathbf{0}^{n-m} \end{array}$$

Optimality and feasibility

Optimality condition (for maximization)

The basis *B* is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \leq \mathbf{0}^{n-m}$ (marginal values = reduced costs ≤ 0)

If not, choose as entering variable $j \in N$ the one with the largest value of the reduced cost $c_j - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_j$

Feasibility condition

For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$

Choose the leaving variable $i^* \in B$ according to

$$i^* = \arg\min_{i\in B} \left\{ \left. \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \right| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0 \right\}$$

In the simplex tableau, we have

basis	-z	x _B	×N	S	RHS
- <i>z</i>	1	0	$\mathbf{c}_{N}^{\mathrm{T}}-\mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{N}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$
x _B	0	I	$B^{-1}N$	\mathbf{B}^{-1}	$B^{-1}b$

- ► s denotes possible slack variables (columns for s are copies of certain columns for (x_B, x_N))
- The computations performed by the simplex algorithm involve matrix inversions and updates of these
- A non-basic (basic) variable enters (leaves) the basis ⇒ one column, A_j, of B is replaced by another, A_k
- ▶ Row operations \Leftrightarrow Updates of \mathbf{B}^{-1} (and $\mathbf{B}^{-1}\mathbf{N}$, $\mathbf{B}^{-1}\mathbf{b}$, and $\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}$)
- ⇒ Efficient numerical computations are crucial for the performance of the simplex algorithm

"Intuitive" derivation of duality (Ch. 6.1)

A linear program with optimal value z*

► How large can *z*^{*} be?

Compute upper estimates of z^{*}, e.g.

- Multiply (1) by $3 \Rightarrow 21x_1 + 30x_2 \le 10800 \Rightarrow z^* \le 10800$
- Multiply (2) by $1.5 \Rightarrow 24x_1 + 18x_2 \le 8100 \Rightarrow z^* \le 8100$
- Combine: $0.6 \times (1) + 1 \times (2) \Rightarrow 20.2x_1 + 18x_2 \le 7560 \Rightarrow z^* \le 7560$
- Do better than guess—compute optimal weights!
- ▶ Value of estimate: $w = 3600v_1 + 5400v_2 \rightarrow \min$

 $\blacktriangleright \text{ Constraints on weights:} \left[\begin{array}{cc} 7v_1 + 16v_2 &\geq 20\\ 10v_1 + 12v_2 &\geq 18\\ v_1, v_2 &\geq 0 \end{array} \right]$

The best (lowest) possible upper estimate of z^*

► A linear program!

It is called the dual of the original linear program

The lego model – the market problem

Consider the lego problem

maximize	Ζ	=	1600 <i>x</i> 1	+	1000 <i>x</i> ₂		
subject to			$2x_1$	+	<i>x</i> ₂	\leq	6
			$2x_1$	+	$2x_2$	\leq	8
					x_1, x_2	\geq	0

- Option: Sell bricks instead of making furniture
- $v_1(v_2) =$ price of a large (small) brick
- Market wish to minimize payment: minimize $6v_1 + 8v_2$
- I sell if prices are high enough:
 - ► $2v_1 + 2v_2 \ge 1600$
 - ▶ $v_1 + 2v_2 \ge 1000$
 - ▶ $v_1, v_2 \ge 0$

- otherwise better to make tables
- otherwise better to make chairs
- prices are naturally non-negative

Linear programming duality

 To each primal linear program corresponds a dual linear program

$$\begin{array}{lll} \mbox{[Primal]} & \mbox{minimize} & z = \mathbf{c}^{\mathrm{T}}\mathbf{x}, \\ & \mbox{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}^n, \end{array} \\ \mbox{[Dual]} & \mbox{maximize} & w = \mathbf{b}^{\mathrm{T}}\mathbf{y}, \\ & \mbox{subject to} & \mathbf{A}^{\mathrm{T}}\mathbf{y} \leq \mathbf{c}. \end{array}$$

► On component form: [Primal] minimize $z = \sum_{j=1}^{n} c_j x_j$ subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i$, i = 1, ..., m, $x_j \ge 0$, j = 1, ..., n, [Dual] maximize $w = \sum_{j=1}^{n} b_i y_i$ subject to $\sum_{i=1}^{m} a_{ij} y_i \le c_j$, j = 1, ..., n.

An example

A primal linear program

The corresponding dual linear program

Rules for constructing the dual program (Ch. 6.2)

maximization	\Leftrightarrow	minimization
dual program	\Leftrightarrow	primal program
primal program	\Leftrightarrow	dual program
constraints		variables
\geq	\Leftrightarrow	≤ 0
\leq	\Leftrightarrow	\geq 0
=	\Leftrightarrow	free
variables		constraints
\geq 0	\Leftrightarrow	\geq
\leq 0	\Leftrightarrow	\leq
free	\Leftrightarrow	=

The dual of the dual of any linear program equals the primal

Duality properties (Ch. 6.3)

Weak duality: Let x be a feasible point in the primal (minimization) and y be a feasible point in the dual (maximization). Then,

$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \ge \mathbf{b}^{\mathrm{T}} \mathbf{y} = w$$

- Strong duality: In a pair of primal and dual linear programs, if one of them has an optimal solution, so does the other, and their optimal values are equal.
- ► Complementary slackness: If x is optimal in the primal and y is optimal in the dual, then x^T(c - A^Ty) = y^T(b - Ax) = 0.

If **x** is feasible in the primal, **y** is feasible in the dual, and $\mathbf{x}^{\mathrm{T}}(\mathbf{c} - \mathbf{A}^{\mathrm{T}}\mathbf{y}) = \mathbf{y}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}) = 0$, then **x** and **y** are optimal for their respective problems.

dual (primal) problem
unique and non-degenerate solution
no feasible solutions
unbounded solution or no feasible solutions
alternative solutions

HOMEWORK!

Formulate and solve graphically the dual of:

$$\begin{array}{rll} \mbox{minimize} & z = & 6x_1 & +3x_2 & +x_3 \\ \mbox{subject to} & & 6x_1 & -3x_2 & +x_3 & \geq 2 \\ & & 3x_1 & +4x_2 & +x_3 & \geq 5 \\ & & & x_1, x_2, x_3 & \geq 0 \end{array}$$

- Then find the optimal primal solution
- Verify that the dual of the dual equals the primal