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A general linear program in standard form

I A linear program with n non-negative variables, m equality
constraints (m < n), and non-negative right hand sides:

maximize z =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj = bi , i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n.

I On matrix form it is written as:

maximize z = cTx,

subject to Ax = b,

x ≥ 0n,

where x ∈ <n, A ∈ <m×n, b ∈ <m
+ (b ≥ 0m), and c ∈ <n.
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An “intuitive” derivation of duality (Ch. 6.1)

I A linear program with optimal value z∗

maximize z := 20x1 +18x2 weights
subject to 7x1 +10x2 ≤ 3600 (1) v1

16x1 +12x2 ≤ 5400 (2) v2
x1, x2 ≥ 0

I How large can z∗ be?
I Compute upper estimates of z∗, e.g.

I Multiply (1) by 3 ⇒ 21x1 + 30x2 ≤ 10800 ⇒ z∗ ≤ 10800
I Multiply (2) by 1.5 ⇒ 24x1 + 18x2 ≤ 8100 ⇒ z∗ ≤ 8100
I Combine: 0.6×(1)+1×(2)⇒ 20.2x1+18x2≤7560⇒ z∗≤7560

I Do better than guess—compute optimal weights!
I Value of estimate: w = 3600v1 + 5400v2 → min

I Constraints on weights:

 7v1 + 16v2 ≥ 20
10v1 + 12v2 ≥ 18

v1, v2 ≥ 0


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The best (lowest) possible upper estimate of z∗

minimize w := 3600v1 + 5400v2
subject to 7v1 + 16v2 ≥ 20

10v1 + 12v2 ≥ 18
v1, v2 ≥ 0

I A linear program!

I It is called the dual of the original linear program
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The lego model – the market problem

I Consider the lego problem

maximize z = 1600x1 + 1000x2
subject to 2x1 + x2 ≤ 6

2x1 + 2x2 ≤ 8
x1, x2 ≥ 0

I Option: Sell bricks instead of making furniture

I v1(v2) = price of a large (small) brick

I Market wish to minimize payment: minimize 6v1 + 8v2

I I sell if prices are high enough:
I 2v1 + 2v2 ≥ 1600 – otherwise better to make tables
I v1 + 2v2 ≥ 1000 – otherwise better to make chairs
I v1, v2 ≥ 0 – prices are naturally non-negative
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Linear programming duality

I To each primal linear program corresponds a dual linear
program

[Primal] minimize z = cTx,

subject to Ax = b,

x ≥ 0n,

[Dual] maximize w = bTy,

subject to ATy ≤ c.

I On component form:
[Primal] minimize z =

∑n
j=1 cjxj

subject to
∑n

j=1 aijxj = bi , i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n,

[Dual] maximize w =
∑n

j=1 biyi
subject to

∑m
i=1 aijyi ≤ cj , j = 1, . . . , n.
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An example

I A primal linear program

minimize z = 2x1 +3x2
subject to 3x1 +2x2 = 14

2x1 −4x2 ≥ 2
4x1 +3x2 ≤ 19

x1, x2 ≥ 0

I The corresponding dual linear program

maximize w = 14y1 +2y2 +19y3
subject to 3y1 +2y2 +4y3 ≤ 2

2y1 −4y2 +3y3 ≤ 3
y1 free,

y2 ≥ 0,
y3 ≤ 0
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Rules for constructing the dual program (Ch. 6.2)

maximization ⇔ minimization

dual program ⇔ primal program
primal program ⇔ dual program

constraints variables
≥ ⇔ ≤ 0
≤ ⇔ ≥ 0
= ⇔ free

variables constraints
≥ 0 ⇔ ≥
≤ 0 ⇔ ≤
free ⇔ =

The dual of the dual of any linear program equals the primal
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Duality properties (Ch. 6.3)

I Weak duality [Th. 6.1]:
Let x be a feasible point in the primal (minimization) and y
be a feasible point in the dual (maximization). Then,

z = cTx ≥ bTy = w

I Strong duality [Th. 6.3]:
In a pair of primal and dual linear programs, if one of them
has an optimal solution, so does the other, and their optimal
values are equal.

I Complementary slackness [Th. 6.5]:
If x is optimal in the primal and y is optimal in the dual, then
xT(c− ATy) = yT(b− Ax) = 0.

If x is feasible in the primal, y is feasible in the dual, and
xT(c− ATy) = yT(b− Ax) = 0, then x and y are optimal for
their respective problems.
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Relations between primal and dual optimal solutions

primal (dual) problem ⇐⇒ dual (primal) problem

unique and ⇐⇒ unique and
non-degenerate solution non-degenerate solution

unbounded solution =⇒ no feasible solutions

no feasible solutions =⇒ unbounded solution or
no feasible solutions

degenerate solution ⇐⇒ alternative solutions
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Exercises on duality

Homework!

I Formulate and solve graphically the dual of:

minimize z = 6x1 +3x2 +x3
subject to 6x1 −3x2 +x3 ≥ 2

3x1 +4x2 +x3 ≥ 5
x1, x2, x3 ≥ 0

I Then find the optimal primal solution

I Verify that the dual of the dual equals the primal
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General derivation of the simplex method (Ch. 4.8)

I B = set of basic variables, N = set of non-basic variables

⇒ |B| = m and |N| = n −m
I Partition matrix/vectors: A=(B,N), x=(xB , xN), c=(cB , cN)
I The matrix B (N) contains the columns of A corresponding

to the index set B (N) — Analogously for x and c
I Rewrite the linear program: maximize z = cTx

subject to Ax = b,

x ≥ 0n

 =

 maximize z = cT
BxB + cT

NxN

subject to BxB + NxN = b,

xB ≥ 0m, xN ≥ 0n−m


I Substitute: xB = B−1b− B−1NxN =⇒

maximize z = cT
BB−1b + [cT

N − cT
BB−1N]xN

subject to B−1b− B−1NxN ≥ 0m,

xN ≥ 0n−m
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Optimality and feasibility

I Optimality condition (for maximization)

The basis B is optimal if cT
N − cT

BB−1N ≤ 0n−m

(marginal values = reduced costs ≤ 0)

If not, choose as entering variable j ∈ N the one with the
largest value of the reduced cost cj − cT

BB−1Aj

I Feasibility condition

For all i ∈ B it holds that xi = (B−1b)i − (B−1Aj)ixj

Choose the leaving variable i∗ ∈ B according to

i∗ = arg min
i∈B

{
(B−1b)i

(B−1Aj)i

∣∣∣∣ (B−1Aj)i > 0

}
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In the simplex tableau, we have

basis −z xB xN s RHS

−z 1 0 cT
N − cT

BB−1N −cT
BB−1 −cT

BB−1b

xB 0 I B−1N B−1 B−1b

I s denotes possible slack variables (columns for s are copies of
certain columns for (xB , xN))

I The computations performed by the simplex algorithm involve
matrix inversions and updates of these

I A non-basic (basic) variable enters (leaves) the basis ⇒ one
column, Aj , of B is replaced by another, Ak

I Row operations ⇔ Updates of B−1 (and B−1N, B−1b, and
cT
BB−1)

⇒ Efficient numerical computations are crucial for the
performance of the simplex algorithm
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Sensitivity analysis (Ch. 5)

I How does the optimum change when the right hand sides
(resources, e.g.) change?

I When the objective coefficients (prices, e.g.) change?

I Assume that the basis B is optimal:

maximize z = cT
BB−1b + [cT

N − cT
BB−1N]xN

subject to B−1b− B−1NxN ≥ 0m,

xN ≥ 0n−m

I xB = B−1b− B−1NxN
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Changes in the right hand side coefficients

I The shadow price [Def. 5.3] of a constraint is defined as the
change in the optimal value as a function of the (marginal)
change in the RHS. It equals the optimal value of the
corresponding dual variable.

I Suppose b changes to b + ∆b

⇒ New optimal value:

znew = cT
BB−1(b + ∆b) = z + cT

BB−1∆b

I The current basis is feasible if B−1(b + ∆b) ≥ 0

I If not: negative values will occur in the RHS of the simplex
tableau

I The reduced costs are unchanged (negative, at optimum)
⇒ this can be resolved using the dual simplex method
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Changes in the right hand side coefficients

I Consider the linear program

minimize z = −x1 −2x2
subject to −2x1 +x2 ≤ 2

−x1 +2x2 ≤ 7
Draw graph!! x1 ≤ 3

x1, x2 ≥ 0

I The optimal solution is given by

basis −z x1 x2 s1 s2 s3 RHS

−z 1 0 0 0 1 2 13

x2 0 0 1 0 1
2

1
2 5

x1 0 1 0 0 0 1 3
s1 0 0 0 1 −1

2
3
2 3
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Changes in the right hand side coefficients

I Change the right hand side according to

minimize z = −x1 −2x2
subject to −2x1 +x2 ≤ 2

−x1 +2x2 ≤ 7 + δ
x1 ≤ 3

x1, x2 ≥ 0

I The change in the right hand side is given by
B−1(0, δ, 0)T = (12δ, 0,−

1
2δ)T ⇒ new optimal tableau:

basis −z x1 x2 s1 s2 s3 RHS

−z 1 0 0 0 1 2 13 + δ

x2 0 0 1 0 1
2

1
2 5 + 1

2δ
x1 0 1 0 0 0 1 3
s1 0 0 0 1 −1

2
3
2 3− 1

2δ

I The current basis is feasible if −10 ≤ δ ≤ 6
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Changes in the right hand side coefficients

I Suppose δ = 8:
basis −z x1 x2 s1 s2 s3 RHS
−z 1 0 0 0 1 2 21
x2 0 0 1 0 1

2
1
2 9

x1 0 1 0 0 0 1 3
s1 0 0 0 1 − 1

2
3
2 −1

I Dual simplex iteration:
I s1 = −1 has to leave the basis
I Find the smallest ratio between reduced costs (for non-basic

columns) and (negative) elements in the “s1-row” (to stay
optimal)

I s2 will enter the basis — New optimal tableau:
basis −z x1 x2 s1 s2 s3 RHS
−z 1 0 0 2 0 5 19
x2 0 0 1 1 0 2 8
x1 0 1 0 0 0 1 3
s2 0 0 0 -2 1 -3 2
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Changes in the objective coefficients

I The reduced cost of a non-basic variable defines the change in
the objective value when the value of the corresponding
variable is (marginally) increased.
The basis B is optimal if cT

N − cT
BB−1N ≤ 0n−m (marginal

values = reduced costs ≤ 0)

I Suppose c changes to c + ∆c

I The new optimal value:

znew = (cB + ∆cB)TB−1b = z + ∆cT
BB−1b

I The current basis is optimal if
(cN + ∆cN)T − (cB + ∆cB)TB−1N ≤ 0

I If not: more simplex iterations to find the optimal solution
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Changes in the objective coefficients

I Change the objective according to

minimize z = −x1 +(−2 + δ)x2
subject to −2x1 +x2 ≤ 2

−x1 +2x2 ≤ 7
x1 ≤ 3

x1, x2 ≥ 0

I The changes in the reduced costs are given by
−(δ, 0, 0)B−1N = (−1

2δ,−
1
2δ) ⇒ new optimal tableau:

basis −z x1 x2 s1 s2 s3 RHS

−z 1 0 0 0 1− 1
2δ 2− 1

2δ 13− 5δ

x2 0 0 1 0 1
2

1
2 5

x1 0 1 0 0 0 1 3
s1 0 0 0 1 −1

2
3
2 3

I The current basis is optimal if δ ≤ 2
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Changes in the objective coefficients

I Suppose δ = 4: new tableau:

basis −z x1 x2 s1 s2 s3 RHS

−z 1 0 0 0 −1 0 −7

x2 0 0 1 0 1
2

1
2 5

x1 0 1 0 0 0 1 3
s1 0 0 0 1 −1

2
3
2 3

I Let s2 enter and x2 leave the basis. New optimal tableau:

basis −z x1 x2 s1 s2 s3 RHS

−z 1 0 2 0 0 1 3

s2 0 0 2 0 1 1 10
x1 0 1 0 0 0 1 3
s1 0 0 1 1 0 2 8
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