MVE165/MMG630, Applied Optimization Lecture 4b Linear programming duality and sensitivity analysis

Ann-Brith Strömberg

2012-03-20

A general linear program in standard form

► A linear program with n non-negative variables, m equality constraints (m < n), and non-negative right hand sides:</p>

maximize
$$z = \sum_{\substack{j=1 \ n}}^{n} c_j x_j$$

subject to $\sum_{\substack{j=1 \ x_j}}^{n} a_{ij} x_j = b_i, \quad i = 1, \dots, m,$
 $x_j \ge 0, \quad j = 1, \dots, n.$

On matrix form it is written as:

where $\mathbf{x} \in \Re^n$, $\mathbf{A} \in \Re^{m \times n}$, $\mathbf{b} \in \Re^m_+$ ($\mathbf{b} \ge \mathbf{0}^m$), and $\mathbf{c} \in \Re^n$.

An "intuitive" derivation of duality (Ch. 6.1)

A linear program with optimal value z*

- ► How large can *z*^{*} be?
- Compute upper estimates of z^{*}, e.g.
 - Multiply (1) by $3 \Rightarrow 21x_1 + 30x_2 \le 10800 \Rightarrow z^* \le 10800$
 - Multiply (2) by $1.5 \Rightarrow 24x_1 + 18x_2 \le 8100 \Rightarrow z^* \le 8100$
 - Combine: $0.6 \times (1) + 1 \times (2) \Rightarrow 20.2x_1 + 18x_2 \le 7560 \Rightarrow z^* \le 7560$
- Do better than guess—compute optimal weights!
- ▶ Value of estimate: $w = 3600v_1 + 5400v_2 \rightarrow \min$

 $\blacktriangleright \text{ Constraints on weights:} \left[\begin{array}{cc} 7v_1 + 16v_2 & \geq 20\\ 10v_1 + 12v_2 & \geq 18\\ v_1, v_2 & \geq 0 \end{array} \right]$

The best (lowest) possible upper estimate of z^*

► A linear program!

It is called the dual of the original linear program

The lego model – the market problem

Consider the lego problem

maximize	Ζ	=	1600 <i>x</i> 1	+	1000 <i>x</i> ₂		
subject to			$2x_1$	+	<i>x</i> ₂	\leq	6
			$2x_1$	+	$2x_2$	\leq	8
					x_1, x_2	\geq	0

- Option: Sell bricks instead of making furniture
- $v_1(v_2) =$ price of a large (small) brick
- Market wish to minimize payment: minimize $6v_1 + 8v_2$
- I sell if prices are high enough:
 - ► $2v_1 + 2v_2 \ge 1600$
 - ▶ $v_1 + 2v_2 \ge 1000$
 - ▶ $v_1, v_2 \ge 0$

- otherwise better to make tables
- otherwise better to make chairs
- prices are naturally non-negative

Linear programming duality

 To each primal linear program corresponds a dual linear program

$$\begin{array}{lll} \mbox{[Primal]} & \mbox{minimize} & z = \mathbf{c}^{\mathrm{T}}\mathbf{x}, \\ & \mbox{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}^n, \end{array} \\ \label{eq:constraints} \mbox{[Dual]} & \mbox{maximize} & w = \mathbf{b}^{\mathrm{T}}\mathbf{y}, \\ & \mbox{subject to} & \mathbf{A}^{\mathrm{T}}\mathbf{y} \leq \mathbf{c}. \end{array}$$

► On component form: [Primal] minimize $z = \sum_{j=1}^{n} c_j x_j$ subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, ..., m,$ $x_j \ge 0, \quad j = 1, ..., n,$ [Dual] maximize $w = \sum_{j=1}^{n} b_i y_i$ subject to $\sum_{i=1}^{m} a_{ij} y_i \le c_j, \quad j = 1, ..., n.$

An example

A primal linear program

The corresponding dual linear program

Rules for constructing the dual program (Ch. 6.2)

maximization	\Leftrightarrow	minimization
dual program	\Leftrightarrow	primal program
primal program	\Leftrightarrow	dual program
constraints		variables
\geq	\Leftrightarrow	\leq 0
\leq	\Leftrightarrow	\geq 0
=	\Leftrightarrow	free
variables		constraints
\geq 0	\Leftrightarrow	\geq
\leq 0	\Leftrightarrow	\leq
free	\Leftrightarrow	=

The dual of the dual of any linear program equals the primal

Duality properties (Ch. 6.3)

• Weak duality [Th. 6.1]:

Let \mathbf{x} be a feasible point in the primal (minimization) and \mathbf{y} be a feasible point in the dual (maximization). Then,

$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \ge \mathbf{b}^{\mathrm{T}} \mathbf{y} = w$$

Strong duality [Th. 6.3]:

In a pair of primal and dual linear programs, if one of them has an optimal solution, so does the other, and their optimal values are equal.

► Complementary slackness [Th. 6.5]: If x is optimal in the primal and y is optimal in the dual, then x^T(c - A^Ty) = y^T(b - Ax) = 0.

If x is feasible in the primal, y is feasible in the dual, and $x^{T}(c - A^{T}y) = y^{T}(b - Ax) = 0$, then x and y are optimal for their respective problems.

primal (dual) problem	\iff	dual (primal) problem
unique and non-degenerate solution	\Leftrightarrow	unique and non-degenerate solution
unbounded solution	\implies	no feasible solutions
no feasible solutions	\Rightarrow	unbounded solution or no feasible solutions
degenerate solution	\Leftrightarrow	alternative solutions

HOMEWORK!

Formulate and solve graphically the dual of:

$$\begin{array}{rll} \mbox{minimize} & z = & 6x_1 & +3x_2 & +x_3 \\ \mbox{subject to} & & 6x_1 & -3x_2 & +x_3 & \geq 2 \\ & & & 3x_1 & +4x_2 & +x_3 & \geq 5 \\ & & & & x_1, x_2, x_3 & \geq 0 \end{array}$$

- Then find the optimal primal solution
- Verify that the dual of the dual equals the primal

General derivation of the simplex method (Ch. 4.8)

• B = set of basic variables, N = set of non-basic variables

$$\Rightarrow$$
 $|B| = m$ and $|N| = n - m$

- ▶ Partition matrix/vectors: $\mathbf{A} = (\mathbf{B}, \mathbf{N})$, $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$, $\mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$
- ► The matrix B (N) contains the columns of A corresponding to the index set B (N) — Analogously for x and c
- Rewrite the linear program:

$$\begin{bmatrix} \text{maximize } z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \text{subject to } \mathbf{A} \mathbf{x} = \mathbf{b}, \\ \mathbf{x} \ge \mathbf{0}^{n} \end{bmatrix} = \begin{bmatrix} \text{maximize } z = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{x}_{B} + \mathbf{c}_{N}^{\mathrm{T}} \mathbf{x}_{N} \\ \text{subject to } \mathbf{B} \mathbf{x}_{B} + \mathbf{N} \mathbf{x}_{N} = \mathbf{b}, \\ \mathbf{x}_{B} \ge \mathbf{0}^{m}, \ \mathbf{x}_{N} \ge \mathbf{0}^{n-m} \end{bmatrix}$$

• Substitute: $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \Longrightarrow$

$$\begin{array}{ll} \text{maximize} & z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N \\ \text{subject to} & \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m, \\ & \mathbf{x}_N \geq \mathbf{0}^{n-m} \end{array}$$

Optimality and feasibility

Optimality condition (for maximization)

The basis *B* is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \leq \mathbf{0}^{n-m}$ (marginal values = reduced costs ≤ 0)

If not, choose as entering variable $j \in N$ the one with the largest value of the reduced cost $c_j - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_j$

Feasibility condition

For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$

Choose the leaving variable $i^* \in B$ according to

$$i^* = \arg\min_{i \in B} \left\{ \left. \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \right| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0 \right\}$$

In the simplex tableau, we have

basis	- <i>z</i>	x B	×N	S	RHS
- <i>z</i>	1	0	$\mathbf{c}_{N}^{\mathrm{T}}-\mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{N}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$
x _B	0	I	$B^{-1}N$	\mathbf{B}^{-1}	$B^{-1}b$

- ► s denotes possible slack variables (columns for s are copies of certain columns for (x_B, x_N))
- The computations performed by the simplex algorithm involve matrix inversions and updates of these
- A non-basic (basic) variable enters (leaves) the basis ⇒ one column, A_j, of B is replaced by another, A_k
- ▶ Row operations \Leftrightarrow Updates of \mathbf{B}^{-1} (and $\mathbf{B}^{-1}\mathbf{N}$, $\mathbf{B}^{-1}\mathbf{b}$, and $\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}$)
- ⇒ Efficient numerical computations are crucial for the performance of the simplex algorithm

Sensitivity analysis (Ch. 5)

- How does the optimum change when the right hand sides (resources, e.g.) change?
- When the objective coefficients (prices, e.g.) change?
- Assume that the basis *B* is optimal:

$$\begin{array}{ll} \text{maximize} & z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N \\ \text{subject to} & \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m, \\ & \mathbf{x}_N \geq \mathbf{0}^{n-m} \end{array}$$

 $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N$

- The shadow price [Def. 5.3] of a constraint is defined as the change in the optimal value as a function of the (marginal) change in the RHS. It equals the optimal value of the corresponding dual variable.
- Suppose **b** changes to $\mathbf{b} + \Delta \mathbf{b}$
- \Rightarrow New optimal value:

$$z^{\text{new}} = \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} (\mathbf{b} + \Delta \mathbf{b}) = z + \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} \Delta \mathbf{b}$$

- The current basis is feasible if $\mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) \ge 0$
- If not: negative values will occur in the RHS of the simplex tableau
- ► The reduced costs are unchanged (negative, at optimum) ⇒ this can be resolved using the *dual simplex method*

Consider the linear program

	minimize	z =	$-x_1$	$-2x_{2}$	
	subject to		$-2x_{1}$	$+x_{2}$	≤ 2
			$-x_{1}$	$+2x_{2}$	\leq 7
DRAW GRAPH!	!		x_1		\leq 3
				x_1, x_2	\geq 0

The optimal solution is given by

basis	- <i>z</i>	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> 3	RHS
- <i>z</i>	1	0	0	0	1	2	13
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	Ō	ī	3
<i>s</i> ₁	0	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

Change the right hand side according to

▶ The change in the right hand side is given by $\mathbf{B}^{-1}(0, \delta, 0)^{\mathrm{T}} = (\frac{1}{2}\delta, 0, -\frac{1}{2}\delta)^{\mathrm{T}} \Rightarrow$ new optimal tableau:

basis	- <i>z</i>	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	RHS
-z	1	0	0	0	1	2	$13 + \delta$
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	$5 + \frac{1}{2}\delta$
<i>x</i> ₁	0	1	0	0	Ō	1	3
<i>s</i> ₁	0	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	$3-\frac{1}{2}\delta$
		-					<u> </u>

• The current basis is feasible if $-10 \le \delta \le 6$

► Suppose δ = 8:

basis	-z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
- <i>z</i>	1	0	0	0	1	2	21
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	9
x_1	0	1	0	0	Ō	ī	3
s_1	0	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	-1

- Dual simplex iteration:
- $s_1 = -1$ has to leave the basis
- Find the smallest ratio between reduced costs (for non-basic columns) and (negative) elements in the "s₁-row" (to stay optimal)
- s₂ will enter the basis New optimal tableau:

basis	- <i>z</i>	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	RHS
- <i>z</i>	1	0	0	2	0	5	19
<i>x</i> ₂	0	0	1	1	0	2	8
x_1	0	1	0	0	0	1	3
<i>s</i> ₂	0	0	0	-2	1	-3	2

Changes in the objective coefficients

The reduced cost of a non-basic variable defines the change in the objective value when the value of the corresponding variable is (marginally) increased.
The basis B is optimal if c_N^T − c_B^TB⁻¹N ≤ 0^{n-m} (marginal values = reduced costs ≤ 0)

Suppose **c** changes to
$$\mathbf{c} + \Delta \mathbf{c}$$

The new optimal value:

$$z^{\text{new}} = (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} = z + \Delta \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b}$$

- ► The current basis is optimal if $(\mathbf{c}_N + \Delta \mathbf{c}_N)^{\mathrm{T}} - (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \leq \mathbf{0}$
- If not: more simplex iterations to find the optimal solution

Changes in the objective coefficients

Change the objective according to

► The changes in the reduced costs are given by $-(\delta, 0, 0)\mathbf{B}^{-1}\mathbf{N} = (-\frac{1}{2}\delta, -\frac{1}{2}\delta) \Rightarrow$ new optimal tableau:

basis	5	- <i>z</i>	x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	RHS
—z	Z	1	0	0	0	$1-\frac{1}{2}\delta$	$2 - \frac{1}{2}\delta$	$13-5\delta$
X	2	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
X_1	1	0	1	0	0	0	1	3
S_1	1	0	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3
					-		-	

• The current basis is optimal if $\delta \leq 2$

Changes in the objective coefficients

Suppose $\delta = 4$: new tableau:

basis	- <i>z</i>	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> 3	RHS
- <i>z</i>	1	0	0	0	-1	0	-7
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	ō	$\overline{1}$	3
<i>s</i> ₁	0	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

• Let s_2 enter and x_2 leave the basis. New optimal tableau:

basis	- <i>z</i>	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	RHS
- <i>z</i>	1	0	2	0	0	1	3
<i>s</i> ₂	0	0	2	0	1	1	10
x_1	0	1	0	0	0	1	3
<i>s</i> ₁	0	0	1	1	0	2	8