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Methods for ILP: Overview (Ch. 14.1)

◮ Enumeration

◮ Implicit enumeration: Branch–and–bound

◮ Relaxations

◮ Decomposition methods: Solve simpler problems repeatedly

◮ Add valid inequalities to an LP – “cutting plane methods”

◮ Lagrangian relaxation

◮ Heuristic algorithms – optimum not guaranteed

◮ “Simple” rules ⇒ feasible solutions

◮ Construction heuristics

◮ Local search heuristics
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Relaxations and feasible solutions (Ch. 14.2)

◮ Consider a minimization integer linear program (ILP):

[ILP] z∗ = min cTx
subject to Ax ≤ b

x ≥ 0 and integer

◮ The feasible set X = {x ∈ Z n
+ |Ax ≤ b} is non-convex

◮ How prove that a solution x∗ ∈ X is optimal?

◮ We cannot use strong duality/complementarity as for linear
optimization (where X is polyhedral ⇒ convexity)

◮ Bounds on the optimal value
◮ Optimistic estimate z ≤ z∗ from a relaxation of ILP
◮ Pessimistic estimate z̄ ≥ z∗ from a feasible solution to ILP

◮ Goal: Find “good” feasible solution and tight bounds for z∗:
z̄ − z ≤ ε and ε > 0 “small”
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Optimistic estimates of z
∗ from relaxations

◮ Either: Enlarge the set X by removing constraints

◮ Or: Replace cTx by an underestimating function f , i.e., such
that f (x) ≤ cTx for all x ∈ X

◮ Or: Do both

⇒ solve a relaxation of (ILP)

◮ Example (enlarge X ):

X = {x ≥ 0 | Ax ≤ b, x integer } and
XLP = {x ≥ 0 | Ax ≤ b}

⇒ zLP = min
x∈XLP

cTx

◮ It holds that zLP ≤ z∗ since X ⊆ XLP
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Relaxation principles that yield more tractable

problems

◮ Linear programming relaxation

Remove integrality requirements (enlarge X )

◮ Combinatorial relaxation

E.g. remove subcycle constraints from asymmetric TSP ⇒
min-cost assignment (enlarge X )

◮ Lagrangean relaxation

Move “complicating” constraints to the objective function,
with penalties for infeasible solutions; then find “optimal”
penalties (enlarge X and find f (x) ≤ cTx)
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Tight bounds

◮ Suppose that x̄ ∈ X is a feasible solution to ILP
(min-problem) and that x solves a relaxation of ILP

◮ Then
z := cTx ≤ z∗ ≤ cTx̄ =: z̄

◮ z is an optimistic estimate of z∗

◮ z̄ is a pessimistic estimate of z∗

◮ If z̄ − z ≤ ε then the value of the solution candidate x̄ is at
most ε from the optimal value z∗

◮ Efficient solution methods for ILP combine relaxation and
heuristic methods to find tight bounds (small ε ≥ 0)
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Branch–&–Bound algorithms (B&B) (Ch. 15)

[ILP] z∗ = min
x∈X

cTx, X ⊂ Z n

◮ Divide–and–conquer: a general principle to partition and
search the feasible space

◮ Branch–&–Bound: Divide–and–conquer for finding optimal

solutions to optimization problems with integrality
requirements

◮ Can be adapted to different types of models
◮ Can be combined with other (e.g. heuristic) algorithms
◮ Also called implicit enumeration and tree search
◮ Idea: Enumerate all feasible solutions by a successive

partitioning of X into a family of subsets
◮ Enumeration organized in a tree using graph search; it is made

implicit by utilizing approximations of z∗ from relaxations of
[ILP] for cutting off branches of the tree
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Branch–&–bound for ILP: Main concepts

◮ Relaxation: a simplification of [ILP] in which some constraints
are removed

◮ Purpose: to get simple (polynomially solvable) (node)
subproblems, and optimistic approximations of z∗.

◮ Examples: remove integrality requirements, remove or
Lagrangean relax complicating (linear) constraints (e.g.
sub-tour constraints)

◮ Branching strategy: rules for partitioning a subset of X

◮ Purpose: exclude the solution to a relaxation if it is not feasible
in [ILP]; corresponds to a partitioning of the feasible set

◮ Examples: Branch on fractional values, subtours, etc.
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B&B: Main concepts (continued)

◮ Tree search strategy: defines the order in which the nodes in
the B&B tree are created and searched

◮ Purpose: quickly find good feasible solutions; limit the size of
the tree

◮ Examples: depth-, breadth-, best-first.

◮ Node cutting criteria: rules for deciding when a subset should
not be further partitioned

◮ Purpose: avoid searching parts of the tree that cannot contain
an optimal solution

◮ Cut off a node if the corresponding node subproblem has

◮ no feasible solution, or

◮ an optimal solution that is feasible in [ILP], or

◮ an optimal objective value that is worse (higher) than that of
any known feasible solution
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ILP: Solution by the branch–and–bound algorithm

◮ Relax integrality requirements ⇒ linear (continuous) problem

◮ B&B tree: branch over fractional variable values
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Good and ideal formulations (Ch. 14.3)

Ax ≤ b

Ideal since all extreme

points are integral

Linear program has

integer extreme points
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Cutting planes: A very small example

◮ Consider the following ILP:

min{−x1 − x2 : 2x1 + 4x2 ≤ 7, x1, x2 ≥ 0 and integer}

◮ ILP optimal solution: z = −3, x = (3, 0)

◮ LP (continuous relaxation) optimum: z = −3.5, x = (3.5, 0)

◮ Generate a simple cut:
“Divide the constraint” by 2
and round the RHS down

x1 + 2x2 ≤ 3.5 ⇒ x1 + 2x2 ≤ 3

◮ Adding this cut to the
continuous relaxation yields
the optimal ILP solution
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Cutting planes: valid inequalities (Ch. 14.4)

◮ Consider the ILP

max 7x1 + 10x2

subject to −x1 + 3x2 ≤ 6 (1)
7x1 + x2 ≤ 35 (2)

x1, x2 ≥ 0, integer

◮ LP optimum: z = 66.5, x = (4.5, 3.5)

◮ ILP optimum: z = 58, x = (4, 3)

◮ Generate a VI by “adding”
the two constraints (1) and (2):
6x1 + 4x2 ≤ 41 ⇒ 3x1 + 2x2 ≤ 20
⇒ x = (4.36, 3.45)

◮ Generate a VI by “7·(1)+(2)”:
22x2 ≤ 77 ⇒ x2 ≤ 3
⇒ x = (4.57, 3)

(1)
(2)
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Cutting plane algorithms (iterativley better

approximations of the convex hull) (Ch. 14.5)

◮ Choose a suitable mathematical formulation of the problem

1. Solve the linear programming (LP) relaxation

2. If the solution is integer, Stop. An optimal solution is found

3. Add one or several valid inequalities that cut off the fractional
solution but none of the integer solutions

4. Resolve the new problem and go to step 2.

◮ Remark: An inequality in higher dimensions defines a
hyper-plane; therefore the name cutting plane
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About cutting plane algorithms

◮ Problem: It may be necessary to generate VERY MANY cuts

◮ Each cut should also pass through at least one integer point
⇒ faster convergence

◮ Methods for generating valid inequalities
◮ Chvatal-Gomory cuts (combine constraints, make beneficial

roundings of LHS and RHS)
◮ Gomory’s method: generate cuts from an optimal simplex basis

(Ch. 14.5.1)

◮ Pure cutting plane algorithms are usually less efficient than
branch–&–bound

◮ In commercial solvers (e.g. CPLEX), cuts are used to help
(presolve) the branch–&–bound algorithm

◮ For problems with specific structures (e.g. TSP and set
covering) problem specific classes of cuts are used
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Lagrangian relaxation (⇒ optimistic estimates of z
∗)

(Ch. 17.1–17.2)

◮ Consider a minimization integer linear program (ILP):

[ILP] z∗ = min cTx
subject to Ax ≤ b (1)

Dx ≤ d (2)
x ≥ 0 and integer

◮ Assume that the constraints (1) are complicating (subtour
eliminating constraints for TSP, e.g.)

◮ Define the set X = {x ∈ Z n
+ |Dx ≤ d}

◮ Remove the constraints (1) and add them—with penalty
parameters v—to the objective function

h(v) = min
x∈X

{

cTx + vT(Ax − b)
}

(3)
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Weak duality of Lagrangian relaxations

Theorem: For any v ≥ 0 it holds that h(v) ≤ z∗.

Proof: Let x be feasible in [ILP] ⇒ x ∈ X and Ax ≤ b. It then
holds that

h(v) = min
x∈X

{

cTx + vT(Ax − b)
}

≤ cTx + vT(Ax − b) ≤ cTx.

Since an optimal solution x∗ to [ILP] is also feasible, it holds
that

h(v) ≤ cTx∗ = z∗.

⇒ h(v) is a lower bound on the optimal value z∗ for any v ≥ 0

◮ The best lower bound is given by

h∗ = max
v≥0

h(v) = max
v≥0

{

min
x∈X

{

cTx + vT(Ax− b)
}

}
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Tractable Lagrangian relaxations

◮ Special algorithms for minimizing the Lagrangian dual
function h exist (e.g., subgradient optimization, Ch. 17.3)

◮ h is always concave but typically nondifferentiable

◮ For each value of v chosen, a subproblem (3) must be solved

◮ For general ILP’s: typically a non-zero duality gap h∗ < z∗

◮ The Lagrangian relaxation bound is never worse that the
linear programming relaxation bound, i.e. zLP ≤ h∗ ≤ z∗

◮ If the set X has the integrality property (i.e., XLP has integral
extreme points) then h∗ = zLP

◮ Choose the constraints (Ax ≤ b) to dualize such that the
relaxed problem (3) is computationally tractable but still does
not possess the integrality property
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An ILP Example

[Homework]

Find optimistic and pessimistic bounds for the following ILP
example using the branch–&–bound algorithm, a cutting plane
algorithm, and Lagrangean relaxation.

max 5x1 + 4x2

s.t. x1 + x2 ≤ 5
10x1 + 6x2 ≤ 45

x1, x2 ≥ 0 and integer

The linear programming optimal solution is given by z = 23.75,
x1 = 3.75 and x2 = 1.25
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