MVE165/MMG630, Applied Optimization
Lecture 8

Shortest paths and network flow models;
linear programming formulation of flows
in networks

Ann-Brith Strémberg

2012-04-17

Lecture 8 Applied Optimization

Network models—examples (Ch. 8)

Many different problems can be formulated as graph or network
flow models:

» Find the shortest/fastest connection from Johanneberg to
Lindholmen

» Connect a number of base stations minimizing the total cost
of construction

» Find the maximum capacity in a given water pipeline network

» Find a time schedule (start and completion times) for activities
in a project

» Find how much goods should be transported from each
supplier to each point of demand, using which links in a
transport system

> ...

Lecture 8 Applied Optimization

Definitions and terminology

» A graph consists of a set NV of nodes linked by a set E of
(undirected) edges and/or a set A of (directed) arcs

» For many applications: distances (or costs) dj; on the
arcs/edges
» A path is a sequence of arcs between two nodes

O—On_

» A cycle/loop is a path that connects a node to itself

(2
1>

Lecture 8 Applied Optimization

Definitions and terminology

» A connected graph has at least one path between each pair of
nodes (example: an unconnected graph)

[>T

> A tree/forest is a graph without cycles connecting a subset of
the nodes.

» A spanning tree is a tree that connects all the nodes of a graph

Lecture 8 Applied Optimization

The minimum spanning tree (MST) problem

» Given an undirected graph G = (N, E) with nodes N, edges E
and distances dj; for each edge (i,j) € E

» Find a subset of the edges that connects all nodes at minimum
total distance

» The number of edges in a spanning tree is |[N| — 1
» A (spanning) tree contains no cycles

» MST is a very simple problem (a matroid) that can be solved
by greedy algorithms

Lecture 8 Applied Optimization

Greedy algorithms for MST

» Prim’s algorithm

1. Start at an arbitrary node

2. Among the nodes that are not yet connected, choose the one
that can be connected at minimum cost

3. Stop when all nodes are connected

» Kruskal's algorithm
1. Sort the edges by increasing distances
2. Choose edges starting from the beginning of the list; skip

edges resulting in cycles
3. Stop when all nodes are connected

» Solve an example!

Lecture 8 Applied Optimization

The shortest path problem (Ch. 8.4)

» Given: a network of nodes N, (directed) arcs A, and arc
distances djj, (i,j) € A

» Find the shortest path from a source node (s € N) to a
destination node (t € N)

Examples that can be formulated as shortest path
problems:

» Find the shortest connection from Johanneberg to Lindholmen
(using bus, tram, bike, car, or combinations, ...)

» Find most reliable route (failure probabilities for the arcs)

» Find the shortest routes for data on the internet

Lecture 8 Applied Optimization

Example: Equipment replacement

» RentCar wants to find a replacement strategy for its cars for a
4-year planning period
» Each year, a car can be kept or replaced

» The replacement cost for each year and period is given in the
table below

» Each car should be used at least 1 year and at most 3 years

Equipment Replacement cost for
obtained at # years in operation

start of year 1 2 3
1 4000 5400 9800
2 4300 6200 8700
3 4800 7100 —
4 4900 — —

Lecture 8 Applied Optimization

Example: Equipment replacement

Equipment Replacement cost for
obtained at # years in operation

start of year 1 2 3
1 4000 5400 9800
2 4300 6200 8700
3 4800 7100 —
4 4900 — —

9800

Cheapest path from 1 to 5: 1 — 3 — 5. Cost: 12500

Lecture 8 Applied Optimization

A linear programming formulation: shortest path

from node s € V to node t € V

> For each arc (i/,j) € A, let xjj be the flow on the arc

» Flow balance in each node k € N

» x;j = Ll if arc (i, /) is in the shortest path and xj; = 0 otherwise
> Linear programming formulation (assume dj; > 0):

min Y djxj,
(ij)eA
-1, k=s,
s.t. Z Xik — Z Xkj = 1, k = t,
i:(i,k)EA ji(k,j)EA 0, ke N\ {s,t},
Xij > 0, (i,j) c A.

» Linear programming dual:
max . Yr — Vs,

st. yj—yi < dj, (i,j))eA
Yk free, ke N

Example: Most reliable route

» Mr Q drives to work daily

» All road links he can choose for a path to work are patrolled by
the police

> It is possible to assign a probability p;; of not being stopped by
the police on link (i,)

» Mr Q wants to find the “shortest” (safest?) path in the sense
that the probability of being stopped is as low as possible

» maximize Prob(not being stopped)

0.3

» Ex. 1 — 4: max{pi2p2a; p13p3a} = max{0.2 - 0.35;0.8 - 0.3}

» Note: This version cannot be formulated as a linear program
Lecture 8 Applied Optimization

Discrete dynamic programming methods (Ch. 18)

» Efficient methods for shortest path problems (and some other
models)

» Expecially to find shortest paths from many to many nodes

» Linear programming can be used but is less efficient

» Functional notation

» yj = length of shortest (most reliable) path from source node
(s) to node j

> yx = oo if no path exists

1 if arc/edge (i,j) is part of the optimal
> X = path from source node s to node k
0 otherwise

Lecture 8 Applied Optimization

Example: shortest paths (Ch. 8.4)

» Shortest paths from node 1 to all other nodes
4 §>
(é %2 2

n=0,=5y3;=4y,=06,y5 =00

Xip = X3 =Xi4 = X34 = X34 = X35 = X34 =0

Xia =1, X3 = Xi4 =Xy = X33 = Xgp = Xg4, =0

Xi3 =1, Xp = Xiy = X34 = X34 = X3p = X34 =0

X3 = X34 = 1, Xip = X{3 = X34 = Xg» = X54 =0

No path exists from 1 to 5

The arcs in the shortest paths from one node to all other
(reachable) nodes forms a tree ((1,2), (1,3), and (3,4))

» If all nodes are reachable: shortest path tree is a spanning tree

Lecture 8 Applied Optimization

vV vyVvyVvVVvVvyVyypy

Negative cycles

» A negative cycle is a cycle of negative total length
= Shortest path “length” — —o0

= Dynamic programming algorithms do usually not apply

Lecture 8 Applied Optimization

Functional equations (Bellman’s equations)

» Principle of optimality: In a graph with no negative cycles,
optimal paths have optimal subpaths

= Functional equations for shortest path from node s to all other
nodes in a graph with no negative cycles

> yS = 0
» yj = min{y; + cj : arc/edge (i,j) exists } for all j # s

C Gij @

Lecture 8 Applied Optimization

Variants of functional equations

> Most reliable path (failure probability p; € [0,1] for arc (i,)):
> yS = 1
> yj =max{y; - pjj: arc/edge (i,j) exists } forall j # s

> Highest capacity path (capacity Kjj > 0 on arc (/,/)):

> Ys = OO0
» yj = max { min{y;; Kij} : arc/edge (i,j) exists }, j # s

» Paths from all nodes to all other nodes in a graph with no
negative cycles (arc distances dj;):

» y; =0 forall j
> yje = min {dje; {yji +yie : i # j, 0} } forall j # ¢

Lecture 8 Applied Optimization

Algorithms for the shortest path problem: Dijkstra

(Ch. 8.4.2)

» Find the shortest path between node s and node / when all
arcs distances are non-negative
» N = set of all nodes; source node s € N
» dj = distance on link from i to j forall i,j € N
» dj = oo if no direct link from 7 to j
Step 0: S :={s}, S:=N\{s},and y; :=ds, i€ N
Step 1:
(a) If S =10, stop. Else find node j such that y; = min; 3 y;
S:=SU{j}and S:=5\{j}
(b) Forallke SandicS:
If Yk > Yi+ dix set Yk = Yi+ diic and pred(k) =1
» The vector pred keeps track of the predecessors

» Dijkstra’s algorithm actually finds shortest paths from the
source to all others nodes

Lecture 8 Applied Optimization

Example: Dijkstra’s algorithm

Find the shortest path from node 1 to all other nodes (Homework)

Lecture 8 Applied Optimization

Algorithms for the shortest path problem:

Floyd—Warshall (Ch. 8.4.2)

» Computes shortest paths between each pair of nodes

» Negative distances are allowed but no negative cycles—but
these can be detected

> Idea: Three nodes i, k,; and distances cj, ¢, and ¢j;
» i — k — j is a short-cut if cj + Ckj < Cjj

> In each iteration 1... k, check whether c;; can be improved by
using the short-cut via k

» Administration of the algorithm: Maintain two matrices per
iteration: D[k]| for the distances and pred[k] to keep track of
the predecessor of each node

Lecture 8 Applied Optimization

Floyd—Warshall’s algorithm

Step 0: Initialize D[0] and pred|0]
Step ki » D[k] := D[k — 1], pred[k] := pred[k — 1]
For each element dj; in D[k]:
If dix + dij < djj, set djj := dix + dij and predjj[k] :== k
Set k = k+1
If k > n stop, else repeat Step k

Find the shortest path from node 3 to all other nodes

Lecture 8 Applied Optimization

